• Title/Summary/Keyword: loading scheme

Search Result 291, Processing Time 0.027 seconds

차상기반 열차위치검지방식의 구성방안 연구 (The study on configuration method for the vehicle-based train position detection)

  • 신경호;정의진;김종기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.238-240
    • /
    • 2006
  • For the method of train position detection, ground-based train position estimation mainly has been applied so far. Ground-based position detection is the way to detect train current positions by installing train position equipments on railroad lines. However, the ground-based methods should install detection equipments on each section, and can only be able to detect train positions from main command center. So this method has several disadvantages such as an discontinuous position detection, an increment in cost of installation and maintenance. To make possible continuous train position detection, and to minimize amount of the cost, the vehicle-based position detection method should be chosen to determine train positions by loading position equipments on vehicles. In this paper, to realize the vehicle-based train position detection method, configuration scheme of train position detection equipment is suggested by using GPS, inertial sensor, speed sensor and its performance is verified by simulations.

  • PDF

원전 화재위험도분석에서 전기회로분석 검증방안에 관한 연구 (A Study on the Verification Scheme for Electrical Circuit Analysis of Fire Hazard Analysis in Nuclear Power Plant)

  • 임현태;오승준;김위경
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.114-122
    • /
    • 2015
  • In a fire hazard analysis (FHA) for nuclear power plant, various electrical circuit analyses are performed in the parts of fire loading analysis, fire modeling analysis, separation criteria analysis, associated circuit analysis, and multiple spurious operation analysis. Thus, electrical circuit analyses are very important areas so that reliability of the analysis results should be assured. This study is to establish essential electrical elements for each analysis for verification of the reliability of the electrical circuit analyses in the fire hazard analysis for nuclear power plants. Applying the results derived by the study to domestic nuclear power plants, it is expected to determine the adequacy of the fire hazard analysis report and contribute to the reliability of the fire hazard analysis of those plants.

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF

PSD 카메라와 프로펠라를 이용한 콘테이너 스웨이 제어 (A New Anti Sway Control for Container Crane Using PSD Camera and Propellers)

  • 최연욱;이형기
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.958-965
    • /
    • 2007
  • The spreaders on container cranes are usually controlled to stop at the same time as their trolleys are stopped. Despite the use of adequate control systems, however, the spreaders usually have comparatively large sway movements, due to their suspension from the trolleys through cables. It is, therefore, important to accurately measure the attitudes of the spreaders, in order to suppress such sways by means of secondary control. Until now, most of conventional anti sway control systems focus on the direct control of the movements of trolleys. which seems not suitable to speed up the entire process - loading and unloading of containers. In this paper, we suggest a new anti sway control system: By using extra equipments - two propellers to suppress the sway and a PSD camera to measure the spreader's attitude - installed on the spreader and the trolley. the sway of the suspended load j, considerably suppressed. The effectiveness of the proposed scheme is verified by the computer simulation and experiment with the miniature of the container crane system.

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.691-729
    • /
    • 2018
  • In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

변절점 굉판휨요소를 이용한 전면기초의 해석 (Mat Foundation Analysis Using Variable Node Plate Bending Element)

  • 최창근;김한수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

P-Version 유한요소법에 의한 피로 균열 해석 (Fatigue Crack Propagation Analysis by P-version of Finite Element Method)

  • 우광성;이채규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1992
  • Since many design problems in the railroad, aerospace and machine structures involve considerations of the effect of cyclic loading, manufacturing and quality control processes must fully account for fatigue of critical components. Due to the sensitivity of the Paris law, it is very important to calculate the ΔK numerically to minimize the error of predicted fatigue life in cycles. It is shown that the p-version of FEM based on LEFM analysis is far better suited for computing the stress intensity factors than the conventional h-version. To demonstrate the proficiency of the proposed scheme, the welded T-joint with crack problem of box car body bolster assembly and a crack problem emanating Iron a circular hole in finite strip have been solved.

  • PDF

대입경 락필재료에 대한 수치시험실 활용해석 (Application simulations as numerical laboratory for large diameter rockfill materials)

  • 전제성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF