• 제목/요약/키워드: loading platform

검색결과 136건 처리시간 0.026초

Development of a dry mock-up system for verifying pyroprocess automation

  • Seungnam Yu;Dongseok Ryu;Byugsuk Park;Jonghui Han
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1913-1924
    • /
    • 2024
  • This paper presents the design and operation of an autonomous robot for pyroprocess automation, which requires unique approaches beyond those used in industrial applications to achieve the desired performance. Maintaining an extremely dry atmosphere is crucial to handle various materials, including chloride, and an autonomous system ensures this dry environment. The drying room dehumidifier was carefully selected and designed to generate dry air, and different types of dry air conditioning performance were evaluated, including assessing worker accessibility inside the mock-up to determine the system's feasibility. Containers used for process materials were modified to fit the gripper system of the gantry robot for automation. The loading and unloading of process materials in each equipment were automatically performed to connect the process equipment with the robotic system. The gantry robot primarily operated through macro motion to approach waypoints containing process materials, eliminating the need for precise approach motion. The robot's tapered jaw design allowed it to grasp the target object even with imperfect positioning. Robot motions were programmed using a robot simulator for initial positioning and motion planning, and real accuracy was tested in a mock-up facility using the OPC platform.

시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향 (Effects of Visual Information Blockage on Landing Strategy during Drop Landing)

  • 고영철;조준행;문곤성;이해동;이성철
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.

정밀도로지도 산업 발전 방향 및 대응방안 연구 (The Future Direction of HD Map Industry Development Plan and Governance)

  • 원상연;문지영;윤서연;최윤수
    • 한국지리정보학회지
    • /
    • 제22권3호
    • /
    • pp.120-132
    • /
    • 2019
  • 현재 자율주행차의 위치결정을 위한 핵심 인프라인 정밀도로지도는 전 세계적으로 자율주행차 탑재 및 서비스 부문에 대한 연계를 위해 노력하고 있다. 글로벌 기업인 Here와 TomTom은 정밀도로지도 생산에서 자율주행차 탑재까지 일련의 체계를 민간기업 중심으로 구축하여 독일 3사(BMW, Audi, Daimler)와 협약을 체결하였다. 일본은 2017년부터 민관이 협력하여 DMP(Dynamic Map Platform)를 조직하고 민간중심의 정밀도로지도 공동구축을 수행하고 있다. 한편, 우리나라 자율주행차 관련 기업들도 차량, 센서, 지도 등 다양한 기업들과 협약을 체결하여 협력하고 있지만 민간과 공공이 개별적으로 정밀도로지도를 구축하고 있는 실정이다. 따라서 국토교통부에서는 기관과 기업의 중복투자 방지, 신속한 정보갱신 등 정밀도로지도의 발전을 위하여 2019년 4월 민-관 협력을 골자로 하는 MOU를 추진하여 체결하였고, 2019년 8월 정밀도로지도 공동구축 협의체를 출범하였다. 이에 본 연구에서는 정밀도로지도 관련 국내 외 동향을 분석하고 관련 기업을 대상으로 인터뷰를 수행하였다. 그리고 국내 정밀도로지도 산업에서 민-관이 상생 협력할 수 있는 방안 등을 분석하였고, 향후 정밀도로지도 공동구축 협의체 운영을 위한 단계별 추진전략 및 운영 방안에 대하여 제시하였다.

불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석 (Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves)

  • 김승준;원덕희
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.49-60
    • /
    • 2017
  • 부유식 구조물의 계류선의 설계는 강도뿐만 아니라 피로수명 측면에서도 검토가 반드시 요구된다. 일반적으로 계류선의 피로 설계에는 동적 응력을 야기하는 하중이 지배적인 영향을 미치게 된다. 즉, 파랑이 주요 설계 하중으로 고려가 된다. 본 연구에서는 불규칙 파랑에 대한 해중 터널 계류선의 피로 손상 특성에 대해 분석한다. 시간 이력 유체-구조 동역학 해석을 통해 특정 환경 하중에 대한 해중터널의 동적 운동 및 계류선에 발생하는 장력과 응력을 계산하고, Rainflow 집계법 및 Palmgren-Miner의 법칙 그리고 DNV 기준에서 제시하는 해양구조물 설계를 위한 S-N 곡선을 고려하여 단기 피로 손상을 추정한다. 해중 터널의 계류 형식과 유사한 계류 형식을 갖는 인장각 플랫폼의 텐던 설계를 참고하여 100년 재현 주기 파랑이 48시간 지속되는 조건을 가정하여 이 환경 하중에 의한 피로 손상도를 추정한다. 본 해석 절차를 따르며, 함체의 흘수와 계류선의 간격 및 초기 기울임 각도가 피로 손상도에 미치는 영향을 분석한다.

롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석 (The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking)

  • 채원식
    • 한국운동역학회지
    • /
    • 제16권1호
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

웹 페이지 로딩시간 감축을 위한 HTML 5 분석 (Efficient Multicasting Mechanism for Mobile Computing Environment)

  • 윤준수;박진태;황현서;표경수;문일영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.775-778
    • /
    • 2015
  • HTML5 기반의 웹 플랫폼이 차세대 국가 표준으로 제정되면서 웹 서비스 업체들은 스마트 미디어기기 및 스마트 TV에서 HTML5 기반의 앱 지원 기술을 경쟁적으로 개발하고 있다. 국제 웹 표준 개발 조직인 W3C를 중심으로 Microsoft, Apple, Mozilla, Google, Opera 등 다양한 웹 브라우저 벤더가 표준화에 참여하고 있다. 이렇듯 점차 HTML5의 중요성이 강조되며 HTML5 기반의 웹 페이지는 더 많은 양의 정보를 포함하여야 되며 더 빠른 속도의 로딩시간이 필요하다. 따라서 본 논문은 웹 페이지 로딩시간을 감축하기 위한 초기 연구로써 각 브라우저별 동일한 웹 페이지를 구성하여 초기 로딩시간을 측정한다. 뿐만 아니라 HTML5 태그, 및 CSS 속성을 하나씩 제거하면서 초기 로딩 시간에 많은 비중을 차지하는 태그 및 속성을 분석하고 그 결과를 통해 향후 웹 페이지 로딩시간을 감축할 수 있는 방안을 마련한다.

  • PDF

바지선을 이용한 해상풍력발전기 운반에 따른 안정성 평가 (Stability Evaluation during Transportation of Offshore Wind Turbine by Barge)

  • 석준;백영수;박종천;김성용;차태형;양영준
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.196-203
    • /
    • 2017
  • In general, the installation of offshore wind turbine have been carried out by a jack-up barge or wind turbine installation vessel. In case of using jack-up barge, an additional barge is required to transport offshore wind turbines. During the transportation, barge is affected by environmental conditions such as wave, wind etc. So, it is important to secure the static and dynamic stability of the barge. In this study, fundamental research was performed to evaluate the stability of barge due to use the guide frame. The analysis for static stability of barge was performed under the two loading conditions with or without wave and those results were evaluated according to the Ministry of Oceans and Fisheries rules. Also motion analysis was performed under the ITTC wave spectrum using buoy data and evaluated based on NORDFORSK guideline by using commercial software Maxsurf Motions.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

운동화의 생체역학적 평가시 하지 회내운동의 운동학적 평가변인에 대한 상해 기준치 연구 (The Study on critical Value of Kinematical Evaluation Variables of Lower Extremity Pronation in Biomechanical Evaluation of Running Shoes)

  • 곽창수;전민주;권오복
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.175-187
    • /
    • 2006
  • The purpose of this study was to find the relationship between Achilles tendon angle, angular velocity from 2D cinematography utilized to easily analyze the functions of shoes, ankle joint moment, knee joint moment, and hip joint moment from 3D cinematography utilized to predict the injury. Also, this study was to provide the optimal standard to analyze the injury related to the shoes. Subjects in this study were 30 university male students and 18 conditions (2 types of running speed, 3 of midsole hardness, 3 of midsole height) were measured using cinematography and force platform. The results were as following. 1) Hip joint abduction moment was effected by many variables such as running speed, midsole height, maximum achilles tendon angle, ground reaction force. 2) Knee joint rotational moment in running was approximately 1/10 - 1/4 times of the injury critical value and eversion moment was approximately 1/4 - 1/2 times of the injury critical value. 3) Ankle joint pronation moment in running was 1/3 - 1/2 times of the injury critical value. 4) Knee joint rotational moment was found to be irrelevant with maximum achilles tendon angle or angular velocity. 5) Pronation from running was thought to be relevant to rather eversion moment activity than rotational moment activity of knee joint. 6) Plantar flexion abductor of ankle showed significant relationship with the ground reaction force variable. 7) When the loading rate for ground reaction force in passive region increased, extensor tended to be exposed to the injury. Main variables in biomechanical analysis of shoes were impact absorption and pronation. Among these variables, pronation factor was reported to be relevant with knee injury from long duration exercise. Achilles tendon angle factor was utilized frequently to evaluate this. However, as the results of this study showed, the relationship between these variables and injury relating variable of knee moment was so important. Studies without consideration on this finding should be reconsidered and reconfirmed.

무게-가변형 드론을 위한 동역학 기반 시뮬레이터 개발 (Development of Simulator for Weight-Variable Type Drone Base on Kinetics)

  • 백금봉;김정환;김식
    • 대한임베디드공학회논문지
    • /
    • 제15권3호
    • /
    • pp.149-157
    • /
    • 2020
  • Regarding previously-developed drone simulators, it was easy to check their flight stability or controlling functions based on the condition that their weight was fixed from the design. However, the drone is largely classified into two types that is the one with the fixed weight whose purpose is recording video with camera and racing and another is whole weight-variable during flight with loading the articles for delivery and spraying pesticide though the weight of airframe is fixed. The purpose of this thesis is to analyze the structure of drone and its flight principle, suggest dynamics-model-based simulator that is capable of simulating weight-variable drone and develop the simulator that can be used for designing main control board, motor and transmission along the application of weight-variable drone. Weight-variable simulator was developed by using various calculation to apply flying method of drone to the simulator. First, ground coordinate system and airframe-fixing coordinate system were established and switching matrix of those two coordinates were made. Then, dynamics model of drone was established using the law of Newton and moment balance principle. Dynamics model was established in Simulink platform and simulation experiment was carried out by changing the weight of drone. In order to evaluate the validity of developed weight-variable simulator, it was compared to the results of clean flight public simulator against existing weight-fixed drone. Lastly, simulation test was performed with the developed weight-variable simulation by changing the weight of drone. It was found out that dynamics model controlled various flying positions of drone well from simulation and the possibility of securing the optimum condition of weight-variable drone that has flying stability and easiness of controlling.