• Title/Summary/Keyword: loading patterns

Search Result 415, Processing Time 0.027 seconds

Experimental study on rock-concrete joints under cyclically diametrical compression

  • Chang, Xu;Guo, Tengfei;Lu, Jianyou;Wang, Hui
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • This paper presents experimental results of rock-concrete bi-material discs under cyclically diametrical compression. It was found that both specimens under cyclical and static loading failed in three typical modes: shear crack, tensile crack and a combined mode of shear and wing crack. The failure modes transited gradually from the shear crack to the tensile one by increasing the interface angle between the interface and the loading direction. The cycle number and peak load increased by increasing the interface angle. The number of cycles and peak load increased with the interface groove depth and groove width, however, decreased with increase in interface groove spacing. The concrete strength can contribute more to the cycle number and peak load for specimens with a higher interface angle. Compared with the discs under static loading, the cyclically loaded discs had a lower peak load but a larger deformation. Finally, the effects of interface angle, interface asperity and concrete strength on the fatigue strength were also discussed.

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

Changes in the fractal dimension of peri-implant trabecular bone after loading: a retrospective study

  • Mu, Teh-Jing;Lee, Dong-Won;Park, Kwang-Ho;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • Purpose: To assess bony trabecular changes potentially caused by loading stress around dental implants using fractal dimension analysis. Methods: Fractal dimensions were measured in 48 subjects by comparing radiographs taken immediately after prosthesis delivery with those taken 1 year after functional loading. Regions of interest were isolated, and fractal analysis was performed using the box-counting method with Image J 1.42 software. Wilcoxon signed-rank test was used to analyze the difference in fractal dimension before and after implant loading. Results: The mean fractal dimension before loading ($1.4213{\pm}0.0525$) increased significantly to $1.4329{\pm}0.0479$ at 12 months after loading (P<0.05). Conclusions: Fractal dimension analysis might be helpful in detecting changes in peri-implant alveolar trabecular bone patterns in clinical situations.

Damage Index of Steel Members under Severe Cyclic Loading

  • Park, Yeon-soo;Han, Suk-yeol;Suh, Byoung-chal;Jeon, Dong-ho;Park, Sun-joon
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • This paper aims at investigating the damage process of steel members leading to the failure under strong repeated loading, proposing the damage index using various factors related to the damage, and developing the analysis method for evaluating the damage state. Cantilever-type steel members were analyzed under uniaxial load and combined with a constant axial load, considering a horizontal displacement history. In analyzing the models, loading patterns and steel types (SS400, SM570, Posten80) were considered as main parameters. From the analysis results, the effects of parameter on the failures mode, the deformation capacity, the damage process are also discussed. Each failure process was compared as steel types. Consequently, the failure of steel members under strong repeated loading was determined by loading. Especially it was seen that the state of the failure is closely related to the local strain.

  • PDF

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Analysis of Failure Behavior of the Box Culvert with 3-Axes Loading System (3축 가력시스템에 의한 박스형 암거의 파괴거동 분석)

  • Woo, Sang-Kyun;Kwon, Yong-Gil;Cho, Jun-Hyong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.142-148
    • /
    • 2009
  • This paper is to investigate the fracture behavior characteristics of box culvert and incremental crack width of upper slab for the incremental loading by the 3-axis loading system. In the 3-axes loading system, loading directions are upper side, left and right side which simulate earth pressure and static traffic load. With the incremental load, crack patterns is investigated on the upper slab, left and right wall. Especially, on the upper slab, crack width is measured by crack gage. Based on the experimental results, structural internal force indices of box culvert are estimated quantitatively.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

Prediction of the Loading Characteristics by Neural Networks Using Structural Analysis of Composite Cylindrical Shells (복합재료 원통쉘의 구조해석을 이용한 신경회로망의 하중특성 추론에 관한 연구)

  • 명창문;이영신;서인석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.137-146
    • /
    • 2002
  • The predictions of the loading characteristics was performed by the neural networks which use the results through structural analysis. The momentum backperpagtion which can be modified the teaming rate and momentum coefficient, was developed. Input patterns of the neural networks are the 9 strains which positioned at the side of the shell and output layers is the loading characteristics. Hidden layers were increased from 1 layers to 3 layers. Developed program which were trained by 9 strains predict the loading characteristics under 0.5%. Inverse engineering can be applicable to the composite laminated cylindrical shells with developed neural networks.