• Title/Summary/Keyword: loading offset

Search Result 61, Processing Time 0.024 seconds

Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan;Engin, Hasan;Ozmutlu, Aydin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • The static response of a finite beam resting on a tensionless Pasternak foundation and subjected to a concentrated vertical load is assessed in this study. The concentrated vertical load may be applied at the center of the beam, or it may be offset from the center. The tensionless character of the foundation results in the creation of lift-off regions between the beam and the foundation. An analytical/ numerical solution is obtained from the governing equations of the contact and lift-off regions to determine the extent of the contact region. Although there is no nonlinear term in the equations, the problem shows a nonlinear character since the contact region is not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The numerical results are presented in figures to illustrate the behaviours of the free-free and pinned-pinned beams under symmetric or asymmetric loading. The figures illustrate the effects of the shear foundation parameter and the symmetric and asymmetric loading options on the variation of the contact lengths and the displacement of the beam.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE PLATFORM SWITCHING

  • Kim Yang-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.727-735
    • /
    • 2005
  • Statement of problem. Platform switching in implant prosthesis has been used for esthetic and biological purpose. But there are few reports for this concept. Purpose. The purpose of this study is evaluation of platform switching in wide implant by three dimensional finite element analysis. Materials and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for Osstem implant system. Three-dimensional finite element models were developed for (1) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with wide cemented abutment, titanium alloy abutment screw, and prosthesis (2) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with regular cemented abutment, titanium alloy abutment screw and prosthesis(platform switching) was made for finite element analysis. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized to 650N, and round and flat type prostheses were loaded to 200 N. Four loading offset point (0, 2, 4, 6 mm from the center of the implants) were evaluated. Models were processed by the software programs HyperMesh and ANSA. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView were used for post processing. Results. The results from experiment were as follows; 1. von Mises stress value is increased in order of bone, abutment, implant and abutment screw. 2. von Mises stress of abutment screw is lower when platform switching. 3. von Mises stress of implant is lower when platform switching until loading offset 4 mm. 4. von Mises stress of abutment is similar between each other. 5. von Mises stress of bone is slightly higher when platform switching. Conclusion. The von Mises stress pattern of implant components is favor when platform switch ing but slightly higher in bone stress distribution than use of wide abutment. The research about stress distribution is essential for investigation of the cortical bone loss.

Preliminary Evaluation of Subsurface Cavity and Road Cave-in Potentials Based on FWD Deflections (FWD 처짐량 기반 도로 공동 및 함몰 위험도 평가 기초 연구)

  • Kim, Tae-Woo;Yoon, Jin-Sung;Lee, Chang Min;Baek, Jongeun;Choi, Yeon-Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.59-68
    • /
    • 2017
  • PURPOSES : The objective of this study is to evaluate the potential risk level of road cave-ins due to subsurface cavities based on the deflection basin measured with falling weight deflectometer (FWD) tests. METHODS: Ground penetrating radar (GPR) tests were conducted to detect road cavities. Then FWD tests were conducted on 13 pavement test sections with and without a cavity. FWD deflections and a deflection ratio was used to evaluate the effect of geometry of the cavity and pavement for road cave-in potentials. RESULTS : FWD deflection of cavity sections measured at 60 cm or a closer offset distance to a loading center were 50% greater than more robust sections. The average deflection ratio of the cavity sections to robust sections were 1.78 for high risk level cavities, 1.51 for medium risk level cavities, and 1.16 for low risk level cavities. The relative remaining service life of pavement with a cavity evaluated with an surface curvature index (SCI) was 8.1% for the high level, 21.8% for the medium level, and 89.8% compared to pavement without a cavity. CONCLUSIONS : FWD tests can be applied to detect a subsurface cavity by comparing FWD deflections with and without a cavity measured at 60 cm or a closer offset distance to loading center. In addition, the relative remaining service life of cavity sections based on the SCI can used to evaluate road cave-in potentials.

A Research for Computation of Bearing Capacity and Settlement of Foundation Considering Scale Effect in Weathered-granite Layer (화강풍화토에서 Scale Effect를 고려한 기초의 지지력 및 침하량 산정에 관한 연구)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2004
  • When calculating bearing capacity and settlement of actual foundation from plate test result fur design and construction of shallow foundation, scale effect should be considered. But, adequate guide and test result of scale effect were not prepared yet in Korea. So, to analyze the relations of bearing capacity and settlement as the difference of loading plate sizes, model test and field loading test were performed with different loading plate on weathered-granite layer. Model tests were conducted with water content, compaction number, saturated unit weight and plate size(Dl5, 25cm) in soil-box$(2,000\times 2,000\times 1,000mm)$ formed soil layer. Field loading tests were carried out with diameters of loading plate$(D15, 25, 30, 40, 75\times 75, 140\times 210cm)$ on the same soil condition. Finally, we presented the prediction formula of bearing and settlement for computating scale offset in design of shallow foundation through result analysis of load test and numerical simulation on weathered soil and rock.

Bearing Properties of Domestic Larix Glulam (국내산 낙엽송집성재의 지압특성)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.93-101
    • /
    • 2008
  • Bearing strength test was investigated to determine the bearing properties of domestic larix glulam according to the load direction (in parallel to grain and in perpendicular to grain), the fastener (bolt and drift-pin), and the direction of laminae. The specimen was 5 ply glulam. The diameters of fastener are 12, 16 and 20 mm. The results were as follows. 1) In according to the diameter of bolt and drift-pin, the average of maximum bearing strength in parallel to grain loading was similar to that in perpendicular to grain loading. The average of maximum bearing strength was 1.50~2.31 times higher in parallel to grain loading than in perpendicular to grain loading. The average of maximum bearing strength in parallel to grain loading was lowered by 20% with increasing the diameter from 16 mm to 20 mm, but that in perpendicular to grain loading didn't show a clear tendency. 2) The average of bearing stiffness in parallel to grain loading was the highest at 16 mm in diameter. The average of bearing stiffness is similar to the shearing stiffness in drift-pin connection with increasing diameter. 3) In parallel to grain loading, the failure mode of specimens was the splitting along the grain in decreasing diameter. The failure mode in perpendicular to grain loading was the splitting along the grain. In this case, split occured more in specimens using bolt than in those using drift-pin. 4) The 5% offset yield strength in parallel to grain loading was similar to the predicted bearing strength of KBCS, NDS. In perpendicular to grain loading, the NDS's equation can be applied to predict the bearing strength.

Selection of Calibration Approaches and Their Impact on the Quantification of Unknown Samples: Case Study on Reduced Sulfur Gases (환원황화합물의 분석과 검량기준의 선택에 따른 오차발생의 특성)

  • Jo, Hyo-Jae;Hong, One-Feel;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • In this study, different calibration approaches for reduced sulfur compounds (RSCs) were investigated by using thermal desorption coupled with gas chromatography (GC) and pulsed flame photometric detection (PFPD). To evaluate the effects of calibration procedures, gaseous standards of 4 RSCs ($H_2S$, $CH_3SH$, DMS, and DMDS) prepared at 10 ppm level were analyzed at 7 loading injection volumes (40, 60, 80, 100, 160, 240, and 320 ${\mu}L$). The results were then compared with calibration curves made with the Z (zero offset) and N (non-zero offset) method. The concentrations of unknown samples were then quantified by using R (ratio) method in which the slope values are compared between standards and samples. Secondly, in A (average) method, results obtained from a multi-point analysis of unknown samples were also averaged to extract representative values for each sample. Results of both experiments showed that analytical error of low molecular weight components (such as $H_2S$ and $CH_3SH$) was greatly expanded with the Z method. In conclusion, the combined application of N-A method was the more realistic approach to reduce biases in the quantification of RSCs.

An Experimental Study for the Hydraulic Behavior of Artificial Rock Joint under Compression and Shear Loading (압축과 전단 하중을 받는 인공 암석 절리의 수리적 거동에 관한 실험적 연구)

  • 이희석;박연주;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.45-58
    • /
    • 2000
  • Cyclic shear test system, which is capable of measuring flow rate inside rock joint, was established to investigate the hydraulic behavior of rough rock joints under various loading conditions. Laboratory hydraulic tests during compression and shear were conducted for artificial rough rock joints. Prior to tests, aperture characteristics of specimens were examined by measuring surface topography. Permeability changes under compression were well approximated with several hydraulic model. Hydraulic behavior conformed to dilation characteristics in the first stage, and permeability increased with increase of dilation. As the shear displacement progressed, flow rate became somewhat constant due to gouge production and offset of apertures. Hydraulic behavior under cyclic shear loading was also influenced by the degradation of asperities and gouge production. In addition. the relation between hydraulic aperture and mechanical aperture under compression and shear loading was investigated and compared.

  • PDF

Low-Phase Noise Oscillator Using Substrate Integrated Waveguide and Complementary Split Ring Resonator (기판 집적형 도파관(SIW)과 Complementary Split Ring Resonator(CSRR)로 구현한 저위상 잡음 발진기 설계)

  • Park, Woo-Young;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.468-474
    • /
    • 2012
  • A low phase-noise microwave oscillator is presented by a substrate integrated waveguide(SIW) loading a complementary split ring resonator(CSRR) in this paper. The unloaded $Q$-factor of the SIW cavity is increased by loading a complementary split ring resonator(CSRR) and its value exhibits 1960. It is theoretically and experimentally demonstrated that the proposed circuit generates 11.3 dBm of output power at 9.3 GHz and a phase-noise of -127.9 dBc/Hz at 1-MHz offset.

AN INFLUENCE OF ABUTMENT MATERIALS ON A SCREW-LOOSENING AFTER CYCLIC LOADING (임플랜트 상부구조의 재료가 반복하중 후 나사풀림에 미치는 영향)

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.240-249
    • /
    • 2007
  • Statement of problem: A phenomenon of screw-loosening in implant abutment is frequently occurred in a single and multiple implant restoration. Purpose: This study was performed to evaluate an effect of abutment material on screw-loosening before and after a cyclic loading. In a single-tooth implant, different materials of abutment, Type III Gold alloy and Zirconium composite$(ZrO_2/Al_2O_3)$ were used. Material and method: The Gold alloy(Type III) and Zirconium composite$(ZrO_2/Al_2O_3)$ were used to make a superstructure of implant, the one of types of UCLA, Each group was constituted of 5 sample with a 30-degree offset angulated loading platform. The external hexagonal fixture was rigidly hel d in a special holding zig to ensure solid fixation without rotation during the tightening and a cyclic loading. A Titanium-alloy screw was used to connect and controlled to be tighten in 20Ncm torque by a digital torque gauge. A 20 times of consecutive closing/opening cycle were performed to evaluate the immediate torque loss. In 5 sample of each material group, an initial opening torque was recorded during 3 closing/opening cycle, then 2Hz, 200N, 1,000,000 cyclic loadings were performed, then a opening torque was evaluated. Result & Conclusion: 1. In this limited study, titanium alloy screw tightened in 20Ncm, a cold-welding phenomen on was not observed during the 20 times of closing/opening cycle(p=0.11, p=0.18). 2. In titanium alloy abutment screw, repeated opening and closing of the screw caused to progressive decrease of opening torque(p=0.014). 3. The difference in preload of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant(p=0.78). 4. The difference in torque loss of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant after 2Hz,200N, 1,000,000 cyclic loading(p=0.92). 5. In titanium alloy abutment screw tightened by 20Ncm, the screw loosening was not significant on each group after 2Hz, 200Ncm, 1,000,000 cyclic loading(p=0.59).