• Title/Summary/Keyword: loading column

Search Result 986, Processing Time 0.035 seconds

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Studies on Whole Cell Immobilized Glucose Isomerase - II. Operational Studies on the Batchwise and Continuous Isomerization of D-Glucose - (포도당 이성화 효소의 세포 고정화에 관한 연구 - 제 2 보 : 회분식 및 연속 반응조를 사용한 포도당의 이성화 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-257
    • /
    • 1979
  • Using the whole cell immobilized glucose isomerase which was prepared in the previous work (Korean J. Food Sci. & Technol., 11(3), 192 (1979), the specific activity of the immobilized enzyme was 48.1 units in the batch reaction system and 114 units in the continuous reaction system per g of matrix, respectively. In the continuous reactor the voidity was 0.36, which was suitable for the packed bed reactor. This immobilized enzyme showed a good operational stability of 115 days of half life which was sufficient for the continuous operation. The experimental result showed that 55 % of the substrate was converted to the product in the packed bed reactor. The productivity was dependent on the flow rate, column geometry, enzyme loading, and substrate concentration. An intrapaticle diffusion was observed by the effectiveness factor of 0.75 and interparticle diffusion by the decrease of Km' with increasing the superficial velocity.

  • PDF

Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns (철근콘크리트 원형기둥의 전단철근 유효단면적 평가)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1999
  • In order to properly evaluate the shear strength of reinforced concrete circular columns due to the transverse shear reinforcement, the average of fractions of forces generated along the circular transverse hoops across the shear failure plane in the loading direction is calculated. For this, the center-to-center diameter of circular transverse hoops. spacing and the crack angle measured to the column longitudinal axis are considered. Using these variables, an equation representing the effective section area of circular transverse shear steel is proposed. The study result shows that the constant parameter. used for the calculation of the effective section area of circular hoops over the last 10 years, should not universally be applied any more. The use of the constant parameter may not seriously do harm to the evaluation of shear strength for circular columns with non-seismically designed transverse hoop reinforcement, since it gives slightly conservative results. However. for well-confined circular columns with close spacing or circular steel jacketing. it gives about 20% overestimation of the shear capacity contributed by the transverse hoop steel.

Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames (철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.383-393
    • /
    • 2007
  • A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piece-wise linear model which can reasonably describe the vertical resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.

Ductility Relationship of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 연성도 상관관계)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.51-61
    • /
    • 2003
  • This research is a park of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. The objectives of this paper are to investigate the relationship between curvature ductility and displacement ductility and to propose a correlation equation for designing of reinforced concrete bridge columns under axial load and cyclic lateral load. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 spirally reinforced concrete columns were selected considering the main variables such as section diameter, aspect ratio, concrete strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. A new equation between curvature ductility factor displacement ductility factor with the aspect ratio was proposed by investigation of 21,600 data produced from the selected column models by applying 3 different definitions of yield displacement.

Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholam Reza;Narmashiri, Kambiz
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • In past years, numerous problems have vexed engineers with regard to buckling, corrosion, bending, and overloading in damaged steel structures. This article sets out to investigate the possible effects of carbon fiber reinforced polymer (CFRP) and steel plates for retrofitting deficient steel square hollow section (SHS) columns. The effects of axial loading, stiffness, axial displacement, the position and shape of deficient region on the length of steel SHS columns, and slenderness ratio are examined through a detailed parametric study. A total of 14 specimens was tested for failure under axial compression in a laboratory and simulated using finite element (FE) analysis based on a numerical approach. The results indicate that the application of CFRP sheets and steel plates also caused a reduction in stress in the damaged region and prevented or retarded local deformation around the deficiency. The findings showed that a deficiency leads to reduced load-carrying capacity of steel SHS columns and the retrofitting method is responsible for the increase in the load-bearing capacity of the steel columns. Finally, this research showed that the CFRP performed better than steel plates in compensating the axial force caused by the cross-section reduction due to the problems associated with the use of steel plates, such as in welding, increased weight, thermal stress around the welding location, and the possibility of creating another deficiency by welding.

Evaluation of Punching Shear Safety of a Two-Way Void Plywood Slab System with Form (거푸집 패널이 부착된 2방향 중공슬래브의 뚫림 전단 안전성 평가)

  • Hur, Moo-Won;Woo, Hyung-Sik;Park, Jung-Min;Kang, Hyun-Wook;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.182-189
    • /
    • 2021
  • VPS(Void Plywood Slab System, VPS) has optimized the shape of the hollow material. In addition, it has a function to prevent the floating of the hollow material and the separation due to the working load. In this study, the punching shear capacity of flat plate was performed using Void Plywood Slab System with form work panel proposed in the previous study. As a result of the test, the strength of the VSPS specimen in which the hollow material was placed beyond 2.0 times the column width from the loading point was reduced by 9.4% compared to the reference specimen. However, the strength value was about 1.57 times higher than the design value suggested by KBC 2016. It was found that there was no change in stiffness compared to the reference specimen until shear failure occurred in the VSPS specimen in which the hollow material was placed. It can be seen that this experiment is being destroyed by shear as the flexural reinforcing bars are sufficiently reinforced.

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

A Study on the Analysis of the Fracture Behavior of Pallet Racks due to Earthquake Load (지진하중으로 인한 팔레트 랙의 파괴 거동 분석에 관한 연구)

  • Kim, Chunggil;Heo, Gwanghee;Jeong, Seonghoon;Kim, Sun Tae;Seo, Youngdeuk;Ko, Byeongchan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.157-164
    • /
    • 2023
  • This study aims to analyze the damage and destruction behavior of pallet racks due to external forces through shaking table test. Pallet racks is a general storage racks type consisting of column, beam, and brace to resist an external force. To analyze the safety of the pallet racks due to external force, a shaking table test was conducted to investigate the pallet racks behavior due to external force while increasing the seismic load targeting the pallet racks used in the existing logistics storage facility. As a result of the shaking table test, it was confirmed that the torsion of the pallet racks damaged the connection parts of some members located on the 1st and 2nd levels, thereby destroying the loading equipment.