• Title/Summary/Keyword: loading/unloading mechanism

Search Result 32, Processing Time 0.018 seconds

A Study on the Process Simulation Analysis of the High Precision Laser Scriber (고정밀 레이저 스크라이버 장비의 공정 시뮬레이션 분석에 관한 연구)

  • Choi, Hyun-Jin;Park, Kee-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.56-62
    • /
    • 2019
  • The high-precision laser scriber carries out scribing alumina ceramic substrates for manufacturing ultra-small chip resistors. The ceramic substrates are loaded, aligned, scribed, transferred, and unloaded. The entire process is fully automated, thereby minimizing the scribing cycle time of the ceramic substrates and improving the throughput. The scriber consists of the laser optical system, pick-up module of ceramic substrates, pre-alignment module, TH axis drive work table, automation module for substrate loading / unloading, and high-speed scribing control S/W. The loader / unloader unit, which has the greatest influence on the scribing cycle time of the substrates, carries the substrates to the work table that carries out the cutting line work by driving the X and Y axes as well as by adsorbing the ceramic substrates. The loader / unloader unit consists of the magazine up / down part, X-axis drive part for conveying the substrates to the left and right direction, and the vision part for detecting the edge of the substrate for the primary pre-alignment of the substrates. In this paper, the laser scribing machining simulation is performed by applying the instrument mechanism of each component module. Through this study, the scribing machining process is first verified by analyzing the process operation and work area of each module in advance. In addition, the scribing machining process is optimized by comparing and analyzing the scribing cycle time of one ceramic substrate according to the alignment stage module speed.

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF