• Title/Summary/Keyword: load-slip

Search Result 514, Processing Time 0.022 seconds

Investigation of the effect of damper location and slip load calculation on the behavior of a RC structure

  • Mehmet Sevik;Taha Yasin Altiok;Ali Demir
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.365-375
    • /
    • 2023
  • Energy dissipation systems increase the energy dissipation capacity of buildings considerably. In this study, the effect of dampers on a typical 10-storey reinforced concrete structure with a ductile moment-resisting frame was investigated. In this context, 5 different models were created according to the calculation of the slip load and the positions of the dampers in the structure. Nonlinear time-history analyzes using 11 different earthquake acceleration records were performed on the models using the ETABS program. As a result of the analyses, storey displacements, energy dissipation ratios, drift ratios, storey accelerations, storey shears, and hysteretic curves of the dampers on the first and last storey and overturning moments are presented. In the study, it was determined that friction dampers increased the energy dissipation capacities of all models. In addition, it has been determined that positioning the dampers in the outer region of the structures and taking the base shear as a basis in the slip load calculation will be more effective.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

TECHNIQUE OF SEPARATE MEASURING SIDE SLIP FOR TOE ANGLE AND CAMBER ANGLE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.681-686
    • /
    • 2006
  • The current flat type side slip tester measures only the total side slip. Therefore, measurement techniques which can be used to determine the side slip for each alignment element were examined. Because the side slip related to the camber angle varies depending on the unit load per travel wheel while the side slip related to the toe angle does not on the unit per travel wheel, but depends only on the direction of the tire, the side slip for each alignment element can be determined separately.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Fretting Oamage Evaluation of Zircaloy-Inconel Contact (지르칼로이-인코넬 접촉에서의 프레팅 손상 평가)

  • 김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • The fretting damage of the contact between Zircaloy-4 and Inconel 600 have Investigated. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. As the result of this research the wear volume increased with the increase of loads, slip amplitudes and the number of cycles and was more affected by slip amplitudes rather than by load. According to SEM, stick, partial slip, gross slip were observed on the surface of both specimens and wavy worn surfaces as the typical fretting damage were also Investigated due to accumulation of plastic flow.

  • PDF

A Nonlinear Analysis on the Unit Model of Steel-Concrete Hybrid Deck for Bridges (교량용 강ㆍ콘크리트 합성 바닥판의 단위모델에 대한 비선형 해석)

  • 정광회;정연주;구현본;김정호;김병석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.85-91
    • /
    • 2003
  • This paper presents a 3D nonlinear analysis with slip in steel-concrete hybrid deck. In this study, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts as full-composite, partial-composite, and non-composite, considering the longitudinal behavior and end-slip as well as the yield load and ultimate load of it. Also, it proved that the stress of lower steel plate at the support was increased, because of frictional forces by reaction forces in the steel-concrete hybrid deck. The end-slip did not occur near the full-composite state, but it was largely increased as the slip modulus decreased. On the basis of the EC 4, the state of steel-concrete hybrid deck classified into brittle behavior and ductile one using the end-slip of it

  • PDF

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.