• Title/Summary/Keyword: load-slip

Search Result 518, Processing Time 0.026 seconds

Anti-Slip Control by Adhesion Effort Estimation of 1C-4 Minimized Railway Vehicle using Load Torque Disturbance Observer (부하토크외란관측기를 이용한 1C-4M 축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 전기영;조정민;이승환;오봉환;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.366-374
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control Is peformed to obtain the maximum transfer of the tractive effort.

Observation of Tribologically Transformed Structures and fretting Wear Characteristics of Nuclear Fuel Cladding (핵연료 봉의 마찰변태구조 관찰과 프레팅 마멸 특성)

  • Kim, Kyeong-Ho;Lee, Min-Ku;Rhee, Chang-Kyu;Wey, Myeong-Yong;Kim, Whung-Whoe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2581-2589
    • /
    • 2002
  • In this research, fretting tests were conducted in air to investigate the wear characteristics of fuel cladding materials with the fretting parameters such as normal load, slip amplitude, frequency and the number of cycles. A high frequency fretting wear tester was designed for this experiment by KAERI. After the experiments, the wear volume and the shape of wear contour were measured by the surface roughness tester. Tribologically transformed structures(TTS) were analysed by means of optical and scanning electron microscopes to identify the main wear mechanisms. The results of this study showed that the wear volume were increased with increasing slip amplitude, and the shape of wear contour was transformed V-type to W-type. Also, it was found that the critical slip amplitude was 168${\mu}{\textrm}{m}$. These phenomena mean that wear mechanism transformed partial slip to gross slip to accelerate wear volume. The wear depth increased with an increase of friction coefficient due to increase of normal load and frequency. The fretting wear mechanisms were believed that, after adhesion and surface plastic deformation occurred by relative sliding motion on the contact between two specimens, TTS creation was induced by surface strain hardening and wear debris were detached from the contact surface which were produced by the micro crack propagation and creation.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Behavior of Composite Structure by Nonlinearity of Steel - concrete Interface (I) -Parametric Study for Nonlinear Model of Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동(I) -비선형 경계면 모델에 따른 매개변수 연구-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.499-507
    • /
    • 2003
  • As the load is increased on the steel-concrete composite structure, its interface begins to show nonlinear behavior due to the reduction of interaction, micro-crack, slip and separation, and it causes slip-softening, Therefore, it is essential to consider the partial-interaction analysis technique. Until now, however, full-interaction or, in some instances, the linear-elastic model, which are insufficient to simulate accurate behavior, are assumed in the analysis of composite structure since the analysis method and nonlinear model for interface are very difficult and complicated. Therefore, the design of composite structure is followed by the experimental method which is inefficient-because a number of tests have to be carried out according to the design environments. In this study, we carried out the nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed more accurate structural behavior and performance by maximum tangential traction and slip-softening at the interface. As a result of this study. we were able to prove that the nonlinear model of interface more exactly represents behavior after yielding, such as ultimate load: that initial tangential stiffness of interface has a significant effect on the yielding load of structural members or part: and that the maximum tangential traction and slip-softening mainly effects structural yielding and ultimate load. Therefore, the structural performance of composite structure is highly dependent on the steel-concrete interface or interaction, which may result in initial tangential stiffness, maximum tangential traction and slip-softening in nonlinear model.

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

The Experimental Study on Load Transfer Mechanisms in Non-slip Device of Steel Pipe Pile Cap (강관말뚝 머리결합부의 미끄럼 방지턱에 관한 하중전달 메카니즘 연구)

  • Kim, Young-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.221-229
    • /
    • 2004
  • In Recent experimental research results of connection method between steel pipe pile and concrete footing are provided based on various experimental observations. It gives a shedding light toward developing better connection method for steel pipe pile at the field application. In this study, the newly developed method is tested for compressive, pull put and combination load including moment with carefully designed monitoring system. The measured data show that new method have at least equivalent or better load resistant capacities compared with those of specified method in Korea Road Design Specification. It is also tried to define and investigate the load transfer mechanism for new method.

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성)

  • Lee Yong Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • This paper investigates P-S (load-settlement) relationship for the end-bearing Pile in granular material using the CRISP FE Program with the laboratory 2D model pile load test. In order to simulate the effect of end-bearing pile problem in the FEA, the author adopts several forms of slip element around the pile length and the pile tip. Through this study it was found that e degree of non-associated Plastic flow rule incoporated into the Mohr-Coulomb model for the end-bearing pile with the slip elements was a dominant factor in terms of numerical solution convergence. In contrast, the roller boundary used along the pile shaft showed a smooth convergence with respect to the degree of non-associated plastic flow rule.