• Title/Summary/Keyword: load-pull

Search Result 271, Processing Time 0.016 seconds

The Effect of Cyclic Load on Different Femoral Fixation Techniques in Anterior Cruciate Ligament Reconstruction (전방십자인대 재건시 이식건의 대퇴골측 고정에 대한 주기성인장부하의 효과)

  • Song Eun-Kyoo;Kim Jong Seok
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2003
  • Purpose: To determine and to compare the effects of cyclic loading on the fixation strength of different femoral fixation methods in ACL reconstruction. Materials and Methods: Biomechanical test using an Instron(R) machine (Model No.5569. Mass, U.S.A) were carried out to compare the pull out strength of six different femoral fixation techniques after a cyclic loading in 72 Yorkshire pig knees. The graft-bone complex was cyclically loaded between 30N and 150N at 50 mm/min rate for 1000 cycles and maximal tensile testing was performed. A preload of 30N was applied to the graft along the axis of the tunnel 15 minutes. ANOVA and the Duncan multiple comparison test was used for the statistical analysis. Results: The mean maximum tensile strength of femoral fixation before and after the cyclic loading test were 1003.4$\pm$145N and 601.1$\pm$154N in hamstring-LA screw(R) group, 595.5$\pm$104N and 360.7$\pm$56N in hamstring-Bioscrew(R) group, 1431.7$\pm$135N and 710.7$\pm$114N in hamstring-Semifix(R) group, 603.6$\pm$54N and 459.1$\pm$46N in hamstring-Endobutton(R) fixation group, 1067.4$\pm$145 and 601.8$\pm$134N in the BPTB-Titanium interference screw group, and 987.1$\pm$168N and 588.7$\pm$124N in the BPTB-Bioscrew(R) group. And these data illustrated that cyclic loading reduces the maximum tensile strength by 40 $\%$, 39 $\%$, 50 $\%$, 24 $\%$, 44 $\%$, 40 $\%$ respectively. Conclusions: With the results of these experiments it should be emphasized that rehabilitation exercises after anterior cruciate ligament reconstruction should be executed with precaution as the repetitive flexion and extension of the knee would compromise the maximum tensile strength of the graft tendon.

  • PDF