• Title/Summary/Keyword: load-displacement

Search Result 2,735, Processing Time 0.031 seconds

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode (일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구)

  • 이성범;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.703-708
    • /
    • 2002
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of Elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation fur elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations and is hence unsuitable. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation fur radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

A study on crack opening behavior of small fatigue crack in Al 2024-T3 material using computerized interferometric strain/displacement gage (계장화 미소변위 측정기를 이용한 Al 2024-T3 소재의 미소피로 균열의 열림특성연구)

  • 이주진;남승훈;허용학;임대순;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1576-1582
    • /
    • 1990
  • To examine small fatigue crack behavior, the crack opening displacement (COD) was measured for surface cracks in the range of few tens to hundreds .mu.m using the computerized Interferometric Strain/Displacement Gage (ISDG) which could measure the relative displacement with a resolution of 0.02 .mu.m. The load-COD record is stored and analyzed after the test to determined the opening load. Single-edge notched specimens, 2.3mm thick, of Al 2024-T3 were precracked at load ratios of 0.0, -1.0 and -2.0 to make small fatigue cracks. The opening loads were measured these small cracks and compared with those of long cracks. The opening load ratios for the short cracks are about 10% smaller than those for long cracks at positive R-ratios, but are about 100% smaller at negative R-ratios.

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

Small Displacement Measurement by Holographic Interferometry (홀로그래피 간섭계를 이용한 미소변위 측정)

  • 이해중;황운봉;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.864-872
    • /
    • 1992
  • Two double-exposure holograms are made in the different view angle at the same time, using laser, by overlapping before and after the static deformation. These images are transfered to the computer. The fringe patterns of holograms are recognized by image processing and each component of the displacement and strain at each point of the specimen is obtained by vector analysis, and the results were presented in the graphical form. For the verification of all the ment process, the two experimental cases, the in-plane displacement by tension load and the out-of-plane displacement by bending load, are measured. These results are compared with the exact solution.

A Study on the Phase Bandwidth Frequency of a Directional Control Valve based on the Metering Orifice (미터링 오리피스를 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Jeon, Sehyeong;Yun, Jooseop
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The spool displacement of directional control valve can be considered as the standard signal to measure the bandwidth frequency of a directional control valve. When the spool displacement is not available, the metering-orifice system is implemented in this research as an alternative way of measuring the 90 degrees phase bandwidth frequency of the hydraulic directional control valve. The inertia effect on the transmission line oil induces the phase lead of the valve load pressure when compared with the phase of spool displacement. The capacitance effect of the oil induces the phase lag of the valve load pressure. The phase of the load pressure can be adjusted to be the same as that of the spool displacement by controlling the opening area of the metering orifice. A series of experiments were conducted to verify the effectiveness of the metering orifice. The 90 degrees phase bandwidth frequency measured from the valve load pressure was significantly deviated in some cases from the frequency of the spool displacement. The metering orifice was hard to be applied to measure the -90 degrees phase bandwidth frequency of the high precision.

Crack Opening Behavior of Perpetrated Crack Under Fatigue Load

  • Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • The leak-before-break (LBB) behaviors of a structural component under high and low fatigue loads are an important problem in nuclear power plants, liquid nitrogen gas tankers and chemical plants. This paper is an experimental study to evaluate the crack opening behavior after penetration for plate and pipe specimens. Crack opening displacement after penetration under low fatigue load could be satisfactorily determined at the center of the plate thickness regardless of the specimen size. In the case of high fatigue load, it is shown that the crack opening displacement at the center of a penetrated crack carl be derived using the gross stress, $\sigma$/sug G/, and the front surface crack length, a$\_$s/, together with the back surface crack length, a$\_$b/.

Finite Element Analysis on the Bearing Loads and Stress of Safety Helmets with an Extruded Structure (정상부에 돌출구조물을 구비한 안전모의 지지하중 및 응력에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents the finite element analysis results for bearing loads and stress distributions of safety helmets with an extruded structure. Five different analysis models with given same displacement load of 9.4mm have been analyzed for bearing loads and maximum von Mises stress. In these models, model 4 and model 5 are recommended as a maximum bearing load and low maximum stress for given displacement load of 9.4mm.

Path Control with Energy-Saving Load-Sensing for a Cylinder-Load System Using Speed-Controlled Fixed Displacement Pump (속도제어-정용량 펌프를 사용하는 실린더-부하계의 에너지절약-부하감지형 경로제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.16-22
    • /
    • 2009
  • This paper deals with the issue of robust position tracking control and energy-saving control for a valve-controlled cylinder system using speed-controlled fixed displacement pump. The whole feedback control system is composed of a pair of interconnected subsystems, that is, valve-controlled cylinder system and load-sensing control system. From experiments it is shown that position tracking control in the load sensing control system can accomplish significant reduction in input energy to pump comparing to a conventional valve-controlled cylinder system, while exhibiting the same position tracking control accuracy.

  • PDF

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.