• Title/Summary/Keyword: load-deflection properties

Search Result 187, Processing Time 0.02 seconds

Dynamic characteristics of elastic beams subjected to traffic loads

  • Tang, Chia-Chih;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.211-230
    • /
    • 2002
  • The objective of this study is to investigate the dynamic behavior of elastic beams subjected to moving loads. Although analytical methods are available, they have limitations with respect to complicated structures. The use of computer technology in recent years is an effective way to solve the problem; thus using the latest technology this study establishes a finite-element solution procedure to investigate dynamic behaviors of a typical elastic beam having a set of constant geometric properties and various span lengths. Both the dead load of the beam and traffic load are applied in which the traffic load is considered a concentrated moving force with various traveling passage speeds on the beam. Dynamic behaviors including deflection, shear, and bending moment due to moving loads are obtained by both analytical and finite element methods; for simple structures, they have an excellent agreement. The numerical results show that based on analytical methods the fundamental mode is good enough to estimate the dynamic deflection along the beam, but is not sufficient to simulate the total response of the shear force or the bending moment. The linear dynamic behavior of the elastic beams subjected to multiple exciting loads can easily be found by linear superposition, and the geometric nonlinear results caused by large deformation and axial force of the beam are always underestimated with only a few exceptions which are indicated. In order to make the results useful, they have been nondimensionalized and presented in graphical form.

An Evaluation of Reinforced Concrete Durability in Chloride Attack Environment under Sustained Load (염해 환경하에서 지속하중을 받는 철근콘크리트 부재의 내구성 평가)

  • Hong, Jun-Seo;Im, Chang-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1045-1050
    • /
    • 2001
  • This study was performed to evaluate reinforced concrete durability in chloride attack environment under sustained load by the corrosion of reinforcing bars and the permeation of chloride ion. Generally, it is regarded that permeability of chloride ion is determined by the properties of concrete, but the effects of load which make alternation of concrete inner structure such as crack and so on should not neglected. In this study, it is shown that the relation between bending load on RC beam, deflection and crack of specimen, permeation of chloride ion, rating of re-bar corrosion, and the relation between compression load and permeation of chloride ion. Therefore the effects of load on permeation of chloride ion and re-bar corrosion are evaluated.

  • PDF

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

Shear Behavior of High Strength Concrete Beams Input Polymer-Steel Fibrous (폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동)

  • Park, Jong-Gun;Lee, Sung-Woo;Kwak, Kae-Hwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.176-180
    • /
    • 2001
  • Steel fiber and polymer are used widely for reinforcement material of RC structures because of its excellences of the durability, serviceability as well as mechanical properties. The purpose of this study is investigate the shear behavior of high concrete beams input polymer-steel fibrous. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. Also, load-strain and load-deflection examined, during the test cracks are sketched the load values according to grow of crack.

  • PDF

Experimental Study on Flexural Behavior of RC Slabs with Expansive Additives (팽창재를 혼입한 철근콘크리트 슬래브의 휨 거동에 관한 실험적 연구)

  • 박홍용;김철영;최익창;배상욱;이호석
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.31-40
    • /
    • 2000
  • This study aims to improve serviceability of concrete by inducing chemical prestress with the application of expansive additives for concrete. For this purpose, material tests and 4 point-bending tests of RC slabs were performed to verify the effect of expansive additives on the concrete. and the critical aspects of the structural behavior were investigated. The results of the material tests show that the optimal proportion of expansive additives is 13% of total cement weigth and the properties of expansive concrete in that proportion are the same as those of plain concrete. Both the experimental cracking load and service load of the expansive concrete slabs are increased in comparison with those of the plain concrete. In addition to the above results, the deflection of expansive concrete is smaller than that of plain concrete, and permanent strains resulting from cyclic load are decreased. It can be concluded that the use of expansive additives to induce chemical prestress in RC slabs greatly improves the serviceability.

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

Load Carrying Capacity and Deformation Properties of Steel Fiber Reinforced Concrete Slab Model Utilizing Waste Glass by Fine Aggregates (폐유리를 잔골재로 활용한 강섬유보강 슬래브모델의 내력 및 변형률특성)

  • 박승범;김경훈;이봉춘;이준;정명일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.385-390
    • /
    • 2003
  • As growing of industrialization and increasing of population, the quantities of waste glasses are rapidly growing in the earth. It cause some problems such as the waste of natural resources and environmental pollution. In this context, recycling waste glass as a material of concrete has a great advantage environmentally and economically. This study is aimed to investigate the effect of load and deflection on fiber reinforced concrete slab model utilizing waste glass by fine aggregates. The flexural strength of the concrete including waste glass increased considerably, as the inclusion rate of steel fiber were increased. And the first crack load, maximum load and energy absorption capacity increased remarkably as the inclusion rate of steel fiber were increased. Therefore, in this study we confirmed the possibility of application for the usage of waste glass to the steel fiber reinforced concrete.

  • PDF

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.