• Title/Summary/Keyword: load pull

Search Result 272, Processing Time 0.019 seconds

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

The Effect of Cyclic Load on Different Femoral Fixation Techniques in Anterior Cruciate Ligament Reconstruction (전방십자인대 재건시 이식건의 대퇴골측 고정에 대한 주기성인장부하의 효과)

  • Song Eun-Kyoo;Kim Jong Seok
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2003
  • Purpose: To determine and to compare the effects of cyclic loading on the fixation strength of different femoral fixation methods in ACL reconstruction. Materials and Methods: Biomechanical test using an Instron(R) machine (Model No.5569. Mass, U.S.A) were carried out to compare the pull out strength of six different femoral fixation techniques after a cyclic loading in 72 Yorkshire pig knees. The graft-bone complex was cyclically loaded between 30N and 150N at 50 mm/min rate for 1000 cycles and maximal tensile testing was performed. A preload of 30N was applied to the graft along the axis of the tunnel 15 minutes. ANOVA and the Duncan multiple comparison test was used for the statistical analysis. Results: The mean maximum tensile strength of femoral fixation before and after the cyclic loading test were 1003.4$\pm$145N and 601.1$\pm$154N in hamstring-LA screw(R) group, 595.5$\pm$104N and 360.7$\pm$56N in hamstring-Bioscrew(R) group, 1431.7$\pm$135N and 710.7$\pm$114N in hamstring-Semifix(R) group, 603.6$\pm$54N and 459.1$\pm$46N in hamstring-Endobutton(R) fixation group, 1067.4$\pm$145 and 601.8$\pm$134N in the BPTB-Titanium interference screw group, and 987.1$\pm$168N and 588.7$\pm$124N in the BPTB-Bioscrew(R) group. And these data illustrated that cyclic loading reduces the maximum tensile strength by 40 $\%$, 39 $\%$, 50 $\%$, 24 $\%$, 44 $\%$, 40 $\%$ respectively. Conclusions: With the results of these experiments it should be emphasized that rehabilitation exercises after anterior cruciate ligament reconstruction should be executed with precaution as the repetitive flexion and extension of the knee would compromise the maximum tensile strength of the graft tendon.

  • PDF