• Title/Summary/Keyword: load limits

Search Result 317, Processing Time 0.023 seconds

Comparative Study of Metallic and Non-metallic Stiffened Plates in Marine Structures

  • Jeong, Han-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2010
  • In this paper, a comparative study of metallic and non-metallic stiffened plates under a lateral pressure load is performed using conventional statistically determinate and SQP(Sequential Quadratic Programming) optimisation approaches. Initially, a metallic flat-bar stiffened plate is exemplified from the superstructure of a marine vessel and, subsequently, its structural topology is varied as hat-section stiffened FRP(Fibre Reinforced Plastics) single skin plates and monocoque FRP sandwich plates having a PVC foam core. These proposed structural alternatives are analysed using elastic closed-form solutions and SQP optimisation method under stress and deflection limits obtained from practice to calculate and optimise geometry dimensions and weights. Results obtained from the comparative study provide useful information for marine designers especially at the preliminary design stage where various building materials and structural configurations are dealt with.

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

Study on the fatigue crack initiation life in rail wheel contact (철도차량용 휠과 레일의 피로균열시작 수명에 관한 연구)

  • 김태완;설광조;조용주
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.733-738
    • /
    • 2002
  • In this study, contact fatigue in wheel-rail contact is simulated. It is necessary to calculate contact stress and subsurface stresses accurately to predict fatigue behavior. Contact stresses are obtained by contact analysis of semi-infinite solid based on influence function and subsurface stress field obtained by using rectangular patch solutions. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when friction coefficient exceeds a specific value for all of three fatigue criteria.

  • PDF

Distributed Resource Partitioning Scheme for Intercell Interference in Multicellular Networks

  • Song, Jae-Su;Lee, Seung-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • In multicellular wireless networks, intercell interference limits system performance, especially cell edge user performance. One promising approach to solve this problem is the intercell interference coordination (ICIC) scheme. In this paper, we propose a new ICIC scheme based on a resource partitioning approach to enhance cell edge user performance in a wireless multicellular system. The most important feature of the proposed scheme is that the algorithm is performed at each base station in a distributed manner and therefore minimizes the required information exchange between neighboring base stations. The proposed scheme has benefits in a practical environment where the traffic load distribution is not uniform among base stations and the backhaul capacity between the base stations is limited.

Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis (회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가)

  • 오광해;차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.123-124
    • /
    • 2015
  • Recently interest on DC systems has been grown up extensively for more efficient connection with renewable energy. During the operation, there happens DC_link voltage variations. This paper focuses on the DC voltage stabilization applied in stand-alone DC microgrid to improve the system stability by keeping the voltage within limits. Batteries and a variable speed diesel generator cover the shortage of power after all available renewable energy is consumed. Load shedding or power generation reduction should automatically takes place if the maximum tolerable voltage variation is exceeded. PSIM based simulation results are presented to evaluate the performance of the proposed control measures.

  • PDF

Modeling and Analysis of Sangmyeong Wind Farm with HESS (HESS가 연계된 상명풍력발전단지의 모델링과 해석)

  • Shin, Hyun;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.422-423
    • /
    • 2019
  • In accordance with the Carbon-Free Island by 2030 policy of Jeju Special Self-Governing Province, renewable energy sources are increasing in Jejudo Island. Due to the intermittent output characteristics of wind turbines, one of the renewable energy sources, which can cause unbalanced system conditions between the demand load and the power generation of Jejudo Island. The Korea Power Exchange limits the output of wind turbines for stabilizing the Jeju power system. Therefore, this paper proposes a method to supply a limited output of Sangmyeong Wind Farm in Jeju Power system to Energy Storage System(ESS) and Water Electrolysis Device(WED). The voltage and frequency fluctuation of the Jeju power system is checked accordingly. The simulation results are performed using the PSCAD/EMTDC program.

  • PDF

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

A New Multiple Presence Servers Architecture in SIP Environment (SIP 환경에서의 새로운 다중 프레즌스 서버 구조)

  • Jang, Choonseo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.79-85
    • /
    • 2013
  • In SIP(Session Initiation Protocol) environment, the presence server should process SIP SUBSCRIBE request messages including multiple presence resources addresses from users, and also precess massive notification messages from the subscribed presence resources. The load of the presence server increases as number of users increase, and it limits system extendability. Therefore a new multiple presence servers architecture has been suggested in this research. In this architecture presence servers can be added dynamically and each server's load can be controlled effectively as number of users increase. Each presence server can monitor current load status of entire presence system by using presence event notification package which newly has been suggested in this paper. When a particular presence server's load increases over predefined limit, the presence service processing is distributed by selecting a server which has the smallest load, or by generating a new server dynamically. In this system the overall load of the entire system can be controlled optimally and extendability of the system can be increased. For this purpose a new presence event notification package and presence information data format have been suggested. The performance of the proposed system has been evaluated by experiments. They shows 44.3% increase in SUBSCRIBE message processing time, and 43.1% increase in Notification message processing time.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.