• Title/Summary/Keyword: load cycles

Search Result 426, Processing Time 0.029 seconds

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.

Impact of seawater corrosion and freeze-thaw cycles on the behavior of eccentrically loaded reinforced concrete columns

  • Diao, Bo;Sun, Yang;Ye, Yinghua;Cheng, Shaohong
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Reinforced concrete structures in cold coastal regions are subjected to coupled effects of service load, freeze-thaw cycles and seawater corrosion. This would significantly degrade the performance and therefore shorten the service life of these structures. In the current paper, the mechanical properties of concrete material and the structural behaviour of eccentrically loaded reinforced concrete columns under multiple actions of seawater corrosion, freeze-thaw cycles and persistent load have been studied experimentally. Results show that when exposed to alternating actions of seawater corrosion and freeze-thaw cycles, the compressive strength of concrete decreases with the increased number of freeze-thaw cycles. For reinforced concrete column, if it is only subjected to seawater corrosion and freeze-thaw cycles, the load resistance capacity is found to be reduced by 11.5%. If a more practical service condition of reinforced concrete structures in cold coastal regions is simulated, i.e., the environmental factors are coupled with persistent loading, a rapid drop of 15% - 26.9% in the ultimate capacity of the eccentrically loaded reinforced concrete column is identified. Moreover, it is observed that the increase of eccentric load serves to accelerate the deterioration of column structural behavior.

The effectiveness of geosynthetic reinforcement, tamping, and stoneblowing of railtrack ballast beds under dynamic loading: DEM analysis

  • Lobo-Guerrero, Sebastian;Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.161-176
    • /
    • 2010
  • Discrete Element Method (DEM) simulations were developed to investigate the effectiveness of geosynthetic reinforcement and the effectiveness of maintenance techniques performed on a simulated ballast bed subjected to dynamic loading. The results from four samples subjected each one to a total of 425 load cycles are presented: one unreinforced and unmaintained sample, one unmaintained but reinforced sample, one unreinforced sample subjected to maintenance in the form of stoneblowing after 200 load cycles, and one unreinforced sample subjected to maintenance in the form of tamping after 200 load cycles. The obtained values of permanent deformation as a function of the applied number of load cycles for the four cases are presented together allowing a comparison of the effectiveness of each technique. Moreover, snapshots of the simulated track sections are presented at different moments of the simulations. The simulations indicated that the geosynthetic reinforcement may not be beneficial for the analyzed case while stoneblowing was the most effective maintenance technique.

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

Life Evaluation of CrN Coatings due to Wear Using Friction and Acoustic Emission Sensor (마찰 및 음향방출 신호를 이용한 CrN 코팅의 마모수명 평가)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.328-334
    • /
    • 1999
  • Acoustic emission (AE) sensor was used to evaluate the wear-life of CrN-coated steel disks with 1 $\mu\textrm{m}$ and 4 $\mu\textrm{m}$ coating thickness. The relationship between Af and friction signal from scratch test and sliding test was investigated. The first spatting of CrN film was detected by AR signals in the early stage of coating failures, and overall failures by friction signals. Therefore, the conservative design for coating-life should be done using the results of AE signals. Using the percent contact load, the ratio of sliding normal load to the critical scratch load and the number of cycles to failure was measured to predict the wear-life of CrN film. On the wear-life dia-gram the percent contact loads and the number of cycles to failure showed a good linear relationship on the log coordinate. As the load percentage was decreased, the diagram showed that the wear-limits, at which the coated steels survived more than 35,000 cycles, were about 4∼5% of the critical scratch loads.

Characteristics of Thermo-Acoustic Emission from Composite Laminates during Thermal Load Cycles

  • Kim, Young-Bok;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.391-399
    • /
    • 2003
  • The thermo-acoustic emission (AE) technique has been applied for nondestructive characterization of composite laminates subjected to cryogenic cooling. Thermo-AE events during heating and cooling cycles showed a Kaiser effect. An analysis of the thermo-AE behavior obtained during the 1st heating period suggested a method for determining the stress-free temperature of the composite laminates. Three different thermo-AE types classified by a short-time Fourier transform of AE signals enabled to offer a nondestructive estimation of the cryogenic damages of the composites, in that the different thermo-AE types corresponded to secondary microfracturing in the matrix contacting between crack surfaces and some abrasive contact between broken fiber ends during thermal load cycles.

Mechanical strength of FBG sensor exposed to cyclic thermal load for structural health monitoring

  • Kim, Heonyoung;Kang, Donghoon;Kim, Dae-Hyun
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.335-340
    • /
    • 2017
  • Fiber Bragg grating (FBG) sensors are applied to structural health monitoring (SHM) in many areas due to their unique advantages such as ease of multiplexing and capability of absolute measurement. However, they are exposed to cyclic thermal load, generally in the temperature range of $-20^{\circ}C$ to $60^{\circ}C$, in railways during a long-term SHM and the cyclic thermal load can affect the mechanical strength of FBGs. In this paper, the effects of both cyclic thermal load and the reflectivity of FBGs on the mechanical strength are investigated though tension tests of FBG specimens after they are aged in a thermal chamber with temperature changes in a range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Results from tension tests reveal that the mechanical strength of FBGs decreases about 8% as the thermal cycle increases to 100 cycles; the mechanical strength then remains steady until 300 cycles. Otherwise, the mechanical strength of FBGs with reflectivity of 6dB (70%) and 10dB (90%) exhibits degradation values of about 6% and 12%, respectively, compared to that with reflectivity of 3dB (50%) at 300 cycles. SEM photos of the Bragg grating parts also show defects that cause their strength degradation. Consequently, it should be considered that mechanical strength of FBGs can be degraded by both thermal cycles and the reflectivity if the FBGs are exposed to repetitive thermal load during a long-term SHM.

A Study on the Safety of Reinforced Concrete Structures under Fatigue Load (피로 하중을 받는 철근콘크리트 구조물의 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.2
    • /
    • pp.18-25
    • /
    • 1994
  • In this thesis, the fatigue tests were performed on a series of reinforced concrete to Investigate the variation of strength and the safety of reinforced concrete structures under fatigue load. The specimens were of the same rectangular cross-section, of effective height 24cm and width 30cm and their span was 330cm. The three point loading system is used in the fatigue tests. In these tests, the fracture mode of reinforced concrete structures under fatigue load, relationship between the repeated loading cycles and the mid-span displacement of the specimens were observed. According to the test results, the following fatigue behavior of reinforced concrete specimens were observed. By increasing of the number of repeated loading cycles, the mid-span displacement became greater, however the Incremental amounts of the displacement were reduced. It could be also known that the inelastic strain energy of the doubly reinforced rectangular beams was larger than that of the singly reinforced rectangular beams as increasing the number of repeated loading cycles. Compliance of reinforced concrete structures tended to be reduced as increasing the repeated loading cycles, and the compliance of the doubly reinforced rectangular beams was generally smaller than that of the singly reinforced rectangular beams. Based on the above investigation, it could be concluded that the doubly reinforced rectangular beams under fatigue load were more efficient to resist the brittle fracture than the singly reinforced rectangular beams.

  • PDF

A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications (구치용 도재소부금관과 전부도재관에 파절을 일으키는 한국음식에 관한 연구)

  • Kim, Jeong-Ho;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • Statement of problem: Recently, there have been increased esthetic needs for posterior dental restorations. The failure of posterior dental ceramic restoration are possible not only by the characters of the component materials but also by the type of food. Purpose: The research aim was to compare the in vitro fracture resistance of simulated first molar crowns fabricated using 4 dental ceramic systems, full-porcelain-occlusal-surfaced PFG, half-porcelain-occlusal-surfaced PFG, Empress 2, Ice Zirkon and selected Korean foods. Material and methods: Eighty axisymmetric crowns of each system were fabricated to fit a preparation with 1.5- to 2.0-mm occlusal reduction. The center of the occlusal surface on each of 15 specimens per ceramic system was axially loaded to fracture in a Instron 4465, and the maximum load(N) was recorded. Afterwards, selected Korean foods specimens(boiled crab, boiled chicken with bone, boiled beef rib, dried squid, dried anchovy, round candy, walnut shell) were prepared. 15 specimens per each food were placed under the Instron and the maximum fracture loads for them were recorded. The 95% confidence intervals of the characteristic failure load were compared between dental ceramic systems and Korean foods. Afterwards, on the basis of previous results, 14Hz cyclic load was applied on the 4 systems of dental ceramic restorations in MTS. The reults were analyzed by analysis of variance and Post Hoc tests. Results: 95% confidence intervals for mean of fracture load 1. full porcelain occlusal surfaced PFG Crown: 2599.3 to 2809.1 N 2. half porcelain occlusal surfaced PFG Crown: 3689.4 to 3819.8 N 3. Ice Zirkon Crown: 1501.2 to 1867.9 N 4. Empress 2 Crown: 803.2 to 1188.5 N 5. boiled crab: 294.1 to 367.9 N 6. boiled chicken with bone: 357.1 to 408.6 N 7. boiled beef rib: 4077.7 to 4356.0 N 8. dried squid: 147.5 to 190.5 N 9. dried anchovy: 35.6 to 46.5 N 10. round candy: 1900.5 to 2615.8 N 11. walnut shell: 85.7 to 373.1 N under cyclic load(14Hz) in MTS, fracture load and masticatory cycles are: 1. full porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 4796.8-9321.2 cycles under 2224.8 N(round candy)load, no fracture under smaller loads. 2. half porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 881705.1-1143565.7 cycles under 2224.8 N(round candy). no fracture under smaller loads. 3. Ice Zirkon Crown fractured at 95% confidence intervlas of 979993.0-1145773.4 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. 4. Empress 2 Crown fractured at 95% confidence intervals of 564.1-954.7 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. Conclusion: There was a significant difference in fracture resistance between experimental groups. Under single load, Korean foods than can cause fracture to the dental ceramic restorations are boiled beef rib and round candy. Even if there is no fracture under single load, cyclic dynamic load can fracture dental posterior ceramic crowns. Experimental data with 14 Hz dynamic cyclic load are obtained as follows. 1. PFG crown(full porcelain occlusion) was failed after mean 0.03 years under fracture load for round candy(2224.8 N). 2. PFG crown(half porcelain occlusion) was failed after mean 4.1 years under fracture load for round candy(2224.8 N). 3. Ice Zirkon crown was failed after mean 4.3 years under fracture load for boiled chicken with bone(382.9 N). 4. Empress 2 crown was failed after mean 0.003 years under fracture load for boiled chicken with bone(382.9 N).

An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load (피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF