• 제목/요약/키워드: load conditions

검색결과 4,832건 처리시간 0.029초

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

콤바인 예취부 고장진단을 위한 예취 칼날부의 진단 시스템 개발(I) - 진동 및 부하 신호 분석 - (Development of Measurement System of Cutter Conditions for Combine Diagnosis (I) - Analysis of Vibration and Load Signals -)

  • 최창현;김용주;김종혁;문정환
    • Journal of Biosystems Engineering
    • /
    • 제32권3호
    • /
    • pp.190-196
    • /
    • 2007
  • The purpose of this study is to develop a measurement system of cutter conditions for combine header diagnosis during rice harvesting. A load cell was installed at the locker-arm to measure load fluctuation and an acceleration senor was used to monitor vibration signal of cutter bar. The data were collected from a paddy field during harvesting. The tests were conducted with a normal cutter, a loosened cutter, a broken cutter, and a worn-out connecter pin at the field. The vibration signals converted by FFT (Fast Fourier Transformation), filtered, and normalized. The load data and peak values of vibration signals in four different frequency ranges were used to determine the cutting operation and the cutter conditions of combine. The multiple comparison tests showed that the load data and peak values of vibration signals were important to monitor the cutting operation and cutter conditions of combine header.

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.

Effects of rock-support and inclined-layer conditions on load carrying behavior of piled rafts

  • Roh, Yanghoon;Kim, Garam;Kim, Incheol;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, the load carrying behavior of piled rafts installed in inclined bearing rock layer was investigated for rock-mounted and -socketed conditions. It was found that settlements induced for an inclined bearing rock layer are larger than for a horizontal layer condition. The load capacity of piled rafts for the rock-mounted condition decreased as rock-layer inclination angle (${\theta}$) increased, while vice versa for the rock-socketed condition. The load capacities of raft and piles both decreased with increasing ${\theta}$ for the rock-mounted condition. When bearing rock layer was inclined, loads carried by uphill-side piles were greater than those by downhill-side piles. The values of differential settlements of rock-mounted and -socketed conditions were not significantly different whereas slightly higher for the rock-socketed condition. The values of load sharing ratio (${\alpha}_p$) and its variation with settlement were not markedly changed by the inclination of bedrock. It was shown that ${\alpha}_p$ for piled rafts installed in rock layer was not affected by ${\theta}$ whereas actual loads carried by raft and piles may vary depending on the pile installation and rock-layer inclination conditions.

불평형 비선형 부하시 궤환선형화 기법을 이용한 3상 4선식 인버터의 제어 성능 개선 (Advanced Control of Three-Phase Four-Wire Inverters using Feedback Linearization under Unbalanced and Nonlinear Load Conditions)

  • 보위엔뀌투;이동춘
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.333-341
    • /
    • 2013
  • In this paper, a feedback linearization control is proposed to regulate the output voltages of a three-phase four-wire inverter under the unbalanced and nonlinear load conditions. First, the nonlinear model of system including the output LC filters is derived in the d-q-0 synchronous reference frame. Then, the system is linearized by the multi-input multi-output feedback linearization. The tracking controllers for d-q-0-components of three-phase line-to-neutral load voltages are designed by linear control theory. The experimental results have shown that the proposed control method gives the good performance in response to the load conditions.

An Adaptive Energy-Efficient and Low-Latency MAC Protocol for Wireless Sensor Networks

  • Liu, Hao;Yao, Guoliang;Wu, Jianhui;Shi, Longxing
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.510-517
    • /
    • 2010
  • In this paper, an adaptive MAC protocol (variable load adaptive (VLA)-MAC) is proposed for wireless sensor networks. This protocol can achieve high energy efficiency and provide low latency under variable-traffic-load conditions. In the case of VLA-MAC, traffic load is measured online and used for adaptive adjustment. Sensor nodes transmit packets in bursts under high load conditions to alleviate packet accumulation and reduce latency. This also removes unnecessary listen action and decreases energy consumption in low load conditions. Simulation results show that the energy efficiency, latency, and throughput achieved by VLA-MAC are higher than those achieved by some traditional approaches.

Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions

  • Zaky, Mochammad;Yasukawa, Hironori
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.53-65
    • /
    • 2018
  • The load condition significantly influences ship maneuverability in calm water. In this research, the effect of the load condition on turning performance of a very large crude oil carrier (VLCC) sailing in adverse weather conditions is investigated by an MMG-based maneuvering simulation method. The relative drift direction of the ship in turning to the wave direction is $20^{\circ}-30^{\circ}$ in ballast load condition (NB) and full load condition (DF) with a rudder angle $35^{\circ}$ and almost constant for any wind (wave) directions. The drifting displacement in turning under NB becomes larger than that under DF at the same environmental condition. Advance $A_d$ and tactical diameter $D_t$ become significantly small with an increasing Beaufort scale in head wind and waves when approaching, although $A_d$ and $D_t$ are almost constant in following wind and waves. In beam wind and waves, the tendency depends on the plus and minus of the rudder angle.

Load spectra growth modelling and extrapolation with REBMIX

  • Volk, Matej;Fajdiga, Matija;Nagode, Marko
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.589-604
    • /
    • 2009
  • In the field of predicting structural safety and reliability the operating conditions play an essential role. Since the time and cost limitations are a significant factors in engineering it is important to predict the future operating conditions as close to the actual state as possible from small amount of available data. Because of the randomness of the environment the shape of measured load spectra can vary considerably and therefore simple distribution functions are frequently not sufficient for their modelling. Thus mixed distribution functions have to be used. In general their major weakness is the complicated calculation of unknown parameters. The scope of the paper is to investigate the load spectra growth for actual operating conditions and to investigate the modelling and extrapolation of load spectra with algorithm for mixed distribution estimation, REBMIX. The data obtained from the measurements of wheel forces and the braking moment on proving ground is used to generate load spectra.

부하조건이 마그네슘-공기연료전지의 출력특성에 미치는 영향 (The Effect of Load Conditions for the Power of Mg-Air Fuel Cell)

  • 김용혁
    • 전기학회논문지P
    • /
    • 제61권3호
    • /
    • pp.134-139
    • /
    • 2012
  • The power characteristics of the Mg-Air fuel cell were investigated with regard to variation of load conditions. The types of load current using for the Mg-Air fuel cell with 10% NaCl electrolyte were step type, ramp type and pulse type. It was found that transient phenomena occurred in the step current load, which is due to activate of the oxidation-reduction reaction process. And the transient time increase with the load current increase. In the load current of ramp type, the slop of voltage drop increased with current load slop ${\alpha}$ increase. The load voltage and power decreased according to the pulse period of load current decrease were attributed to the metal sludges.

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.