• Title/Summary/Keyword: load angle

Search Result 1,585, Processing Time 0.031 seconds

Effect of Bend Angle on Plastic Loads of Pipe Bends Under Internal Pressure and In-Plane Bending (내압과 굽힘하중을 받는 곡관의 소성 하중에 굽힘 각도가 미치는 영향)

  • Lee, Kuk-Hee;Oh, Chang-Sik;Yoo, Bong;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.322-330
    • /
    • 2007
  • This paper quantifies the effect of a bend angle of a pipe bend on plastic loads, via small strain and large strain FE limit analyses using elastic-perfectly plastic materials. To consider the effect of the attached straight pipe, two limiting cases are considered. One case corresponds to the pipe bend without the attached straight pipe, and the other to that with a sufficiently long attached straight pipe. For the former case, the FE results suggest that the limit load is not affected by the bend angle for both in-plane bending and internal pressure. For the latter case, however, the bend angle affects plastic loads. An interesting finding is that the plastic load smoothly changes from the limit load of the straight pipe when the bend angle approaches zero to the plastic load of the $90^{\circ}$ pipe bend when the bend angle approaches 90 degree. Based on such observations, closed-form plastic load solutions are proposed for the pipe bend with an arbitrary bend angle under in-plane bending and internal pressure.

Creative Design of Large-Angle Pin Type Load Cell for the Overload Limiter of a Movable Crane (이동식크레인의 과부하방지장치용 광각도 핀형 로드셀의 창의적 설계)

  • Han, Dong Seop;Ha, Jeong Min;Han, Geun Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An overload limiter is used to prevent its overturning accident during an operation of a movable crane. Recently the indirect measuring method, which measures hoisting load and overturning moment of overload limiter, demands instead of the existing method, which measures only hoisting load. The indirectly measuring method is how to conduct the hoisting load and overturning moment as measuring the load of hydraulic cylinder for a luffing driving of boom. So we need to develop the multi-angular pin type load cell with the measuring angle of ${\pm}10$ degree instead of the existing load cell with the measuring angle of ${\pm}2$ degree. In this study the finite element analysis is conducted to evaluate the effect of the aspect ratio of measuring cross section on the measuring limit of the load cell to develop the many-angular pin type load cell. For this investigation, the aspect ratio of measuring cross section and load applying angle were adopted as design parameters and the stresses of measuring part were evaluated for each parameter.

Influence of Habitual Unilateral Support on Scoliosis Angle and Iliac Crest Height of Lumbago Patients (습관적인 편측지지가 요통환자의 측만각과 장골능 높이에 미치는 영향)

  • Cho, Woon-Soo;Kim, Yong-Nam;Jeong, Jin-Gyu
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.5 no.2
    • /
    • pp.73-84
    • /
    • 2007
  • This study aims to examine changes from differences in the lumbar scoliosis angle and iliac crest height due to abnormal and habitual posture shown in unilateral weight load at standing posture and suggest data for preventing and treating lumbago. The subjects of this study are 16 lumbago patients between twenties and forties with chronic lumbago over six months, but without neurological symptoms. As a result of photographing front and back with three conditions such as weight load on both sides and left or right unilateral weight load posture in order to examine changes of lumbar scoliosis and iliac crest according to changes of posture at unilateral weight load, while scoliosis angle and iliac crest height by habitual unilateral support were increased, those by opposite support were decreased. In conclusion, it was found that habitual unilateral weight load may cause continuous distortion of spinal angle and change of iliac crest height and these may be a factor of lumbago. Therefore, if habitual unilateral weight load state is kept continuously, distortion of lumbar angle and iliac crest height may be greater and common efforts to change habitual unilateral weight load are needed.

  • PDF

The Effect on the Heating and Cooling Load of Building by Slat Angle Variation of Venetian Blind (베네치안 블라인드의 슬래트 각도변화가 건물의 냉난방 부하에 미치는 영향)

  • Cho, S.H.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 1995
  • Generally, among many kinds of shading devices such as venetian blind, sunscreen, louver and curtain, venetian blind is using widely because the mechanism is so simple and easy to use solar insolation by controlling the slat angle. Analysis of time dependent heat transfer through the window with venetian blind is very important in order to use it effectivly. Therefore, in this study, theoretical thermal analysis method was developed to analyze time dependent heat transfer through a double pane window with and without venetian blind, and was made one module of TRNSYS(A Transient Simulation Program)program. By this way, it was analyzed that how much the variation of slat angle, slat colour and slat absorptivity of venetian blind would be affected on the heating and cooling load of building, and also which colour and angle of slat was optimal for the heating and cooling load of building.

  • PDF

A Study on Analysis Method of Torque and Torque Ripple according to Load Angle for Permanent Magnet Motor (영구자석 전동기의 부하각에 따른 토크 및 토크리플 분석을 위한 해석법 연구)

  • Kim, Ki-Chan;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.621_622
    • /
    • 2009
  • This paper presents an efficient calculation method for torque and torque ripple of a permanent magnet synchronous motor by using superposing method of load angle torque curves from finite element method. The load angle range having minimum torque ripple as well as average torque according to load angle can be induced by proposed method. We selected a permanent magnet assisted synchronous reluctance motor (PMa-SynRM) as a study model because of its high torque ripple. We performed experiment of torque ripple and average torque according to load angle for the verification of proposed method in the paper.

Influence of Taper Angle on Axial Behavior of Tapered Piles in Sand (모래지반에서 테이퍼 각도가 테이퍼말뚝의 연직거동에 미치는 영향)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.69-76
    • /
    • 2007
  • Axial behavior of tapered piles is affected by taper angle, stress state of soils, soil frictional angle and pile-soil interface friction angle. In this paper, a series of model pile load tests were performed using a calibration chamber in order to investigate the effect of taper angle on the axial response of cast-in-place tapered piles in sand. According to results of the tests, as taper angle of piles increased, the shaft load capacity of piles increased but its base load capacity decreased. The unit base load capacity of piles increased with increasing taper angle for medium sand but decreased for dense sand. The ratio of shaft to total load capacity increased with increasing taper angle and with decreasing relative density of soils. The test results also showed that total load capacity per unit pile volume increased with increasing taper angle for medium sand, but it decreased for dense sand. Therefore, it can be stated that tapered piles are economically more beneficial for medium sand than for dense sand.

A Study on the Optimum Slope of the Roof for Minimum Cooling Load (냉방부하 최소화를 위한 지붕의 최적기울기에 관한 연구)

  • Tae, Won-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.119-123
    • /
    • 2005
  • The main purpose of this study is to define an optimum slope of the roof that demands minimum cooling load of the building, when the roof is affected by the solar and wind energy. Two different roof shapes were chosen: hip, gabled. The cooling load of building having those roof shapes was calculated through the computer simulation, using DOE program. For the simulation, the angle of the roof and angle of the orientation was changed. In the conclusion of this paper, an optimum slope of the roof which causes minimize cooling load is presented according to the roof shape and orientation. The result of this study could provide a practical design guideline for determining the roof angle for various climatic conditions.

Numerical Analysis of Load Bearing Behavior of Shallow Foundations (얕은기초의 하중지지거동에 관한 수치해석)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6322-6328
    • /
    • 2014
  • Finite element analyses were performed to find out the load bearing behavior of three kinds of shallow foundations. The analysis results for strip footing showed that local shear failure mode could be observed for a zero dilatancy angle and general shear failure mode could be seen for non-zero dilatancy angles. The ultimate bearing loads for non-zero dilatancy angles were approximately 1.5 times higher than that of a zero dilatancy angle. General shear failure mode was observed for circular footing and square footing regardless of the dilatancy angle. The ultimate bearing loads for a non-zero dilatancy angle were slightly greater than that for a zero dilatancy angle. A comparison of the load-settlement curves for three kinds of footing showed that the load bearing capacities for non-zero dilatancy angle were greater than those for a zero-dilatancy angle.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate (섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.204-209
    • /
    • 2001
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

  • PDF