• 제목/요약/키워드: load and resistance factor design (LRFD)

검색결과 88건 처리시간 0.024초

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

Optimum design of steel frames with semi-rigid connections and composite beams

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.299-313
    • /
    • 2015
  • In this paper, an optimization process using Genetic Algorithm (GA) that mimics biological processes is presented for optimum design of planar frames with semi-rigid connections by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints as indicated in AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), maximum lateral displacement constraints and geometric constraints are considered for optimum design. Two different planar frames with semi-rigid connections taken from the literature are carried out first without considering concrete slab effects in finite element analyses and the results are compared with the ones available in literature. The same optimization procedures are then repeated for full and semi rigid planar frames with composite (steel and concrete) beams. A program is developed in MATLAB for all optimization procedures. Results obtained from this study proved that consideration of the contribution of the concrete on the behavior of the floor beams provides lighter planar frames.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

Optimum design of steel space structures using social spider optimization algorithm with spider jump technique

  • Aydogdu, Ibrahim;Efe, Perihan;Yetkin, Metin;Akin, Alper
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.259-272
    • /
    • 2017
  • In this study, recently developed swarm intelligence algorithm called Social Spider Optimization (SSO) approach and its enhanced version of SSO algorithm with spider jump techniques is used to develop a structural optimization technique for steel space structures. The improved version of SSO uses adaptive randomness probability in generating new solutions. The objective function of the design optimization problem is taken as the weight of a steel space structure. Constraints' functions are implemented from American Institute of Steel Construction-Load Resistance factor design (AISC-LRFD) and Ad Hoc Committee report and practice which cover strength, serviceability and geometric requirements. Three steel space structures are optimized using both standard SSO and SSO with spider jump (SSO_SJ) algorithms and the results are compared with those available in the literature in order to investigate the performance of the proposed algorithms.

Optimum design of steel space frames with composite beams using genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.503-519
    • /
    • 2015
  • This paper presents an optimization process using Genetic Algorithm (GA) for minimum weight by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-LRFD (American Institute of Steel Construction-Load and Resistance Factor Design), lateral displacement constraints being the top and inter-storey drift, mid-span deflection constraints for the beams and geometric constraints are considered for optimum design by using GA that mimics biological processes. Optimum designs for three different space frames taken from the literature are carried out first without considering concrete slab effects in finite element analyses for the constraints above and the results are compared with the ones available in literature. The same optimization procedures are then repeated for the case of space frames with composite (steel and concrete) beams. A program is coded in MATLAB for the optimization processes. Results obtained in the study showed that consideration of the contribution of the concrete on the behavior of the floor beams results with less steel weight and ends up with more economical designs.

Optimum design of steel space frames under earthquake effect using harmony search

  • Artar, Musa
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.597-612
    • /
    • 2016
  • This paper presents an optimization process using Harmony Search Algorithm for minimum weight of steel space frames under earthquake effects according to Turkish Earthquake Code (2007) specifications. The optimum designs are carried out by selecting suitable sections from a specified list including W profiles taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-Load and Resistance Factor Design (LRFD) specifications, lateral displacement constraints and geometric constraints are considered in the optimum designs. A computer program is coded in MATLAB for the purpose to incorporate with SAP2000 OAPI (Open Application Programming Interface) to perform structural analysis of the frames under earthquake loads. Three different steel space frames are carried out for four different seismic earthquake zones defined in Turkish Earthquake Code (2007). Results obtained from the examples show the applicability and robustness of the method.

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

국내 항타강관말뚝 설계법의 신뢰성평가 (Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea)

  • 허정원;박재현;김경준;이주형;곽기석
    • 한국지반공학회논문집
    • /
    • 제23권12호
    • /
    • pp.61-73
    • /
    • 2007
  • 본 논문에서는 국내 하중저항계수설계법 개발의 일환으로 구조물기초설계기준에 적용된 항타강관말뚝의 두 정역학적 지지력공식에 대하여 대표적인 신뢰성분석기법인 일차신뢰도법(FORM)과 몬테카를로 시뮬레이션(MCS)을 이용한 강도 높은 신뢰성해석을 수행하고 그 신뢰성수준을 평가하였다. 두 정역학설계법에 대한 저항편향계수는 대표 측정지지력과 설계지지력을 비교함으로써 평가하였다. 국내 정재하시험 및 지반조사 자료를 수집하여 말뚝의 측정 극한지지력을 결정하였고, 정역학적 지지력공식과 Meyerhof 경험식을 이용하여 설계 극한지지력을 산정하였다. 정확하고 효율적인 신뢰성평가를 위해 일차신뢰도법 및 몬테카를로 시뮬레이션 기반의 컴퓨터 프로그램을 개발하였다. 저항편향계수의 통계치를 이용하여 명시적 형태의 간편법인 평균일계이차모멘트법(MVFOSM)과 개선된 방법인 일차신뢰도법 및 몬테카를로 시뮬레이션에 의한 신뢰성해석을 수행하여 그 결과를 비교하였다. 또한 신뢰성 분석에 대한 주요 확률변수의 영향정도와 민감도를 파악하기 위하여 매개변수연구를 수행하였다.

인장력을 받는 ㄱ형강의 블록전단 파단에 관한 실험적 연구 (An Experimental Study on the Block Shear Rupture of Angle Tension Members)

  • 김보영;이규광;최문식
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.721-730
    • /
    • 1998
  • 강 구조물의 접합부는 구조물이 안전에 큰 영향을 미치는 부분으로서 이에 대한 연구는 많이 이루어지고 있으나 순수 인장력을 받는 접합부의 블록전단 파단에 대한 연구는 외국에서도 근래에 시작되었으며 현재 국내에서는 연구실적이 없는 상태이다. 본 연구는 최근 우리나라에서 제정된 강구조 한계상태설계기준에 따른 블록전단 산정식의 타당성을 인장력을 받는 ㄱ형강 접합부의 실험에 의하여 규명하고자 한다. 연구방법은 기존의 연구결과의 블록전단 파단형상 및 극한내력을 본 연구와 비교분석하고 기준 산정식의 합당성을 평가하였다. 실험결과 접합부는 2가지 형상, 인장항복 전단파단과 전단항복 인장파단이 일어났으며 실험 파단하중이 기준식에 의한 내력보다 약 15% 크게 나타나고 있어 앞으로 보다 많은 연구에 의해 강구조 한계상태 설계법의 블록전단 산정식에 대한 평가가 필요하다고 사료된다.

  • PDF

프리플렉스교의 전산화 최적설계 (Computer-Aided Optimization of Preflex Bridges)

  • 조효남;이웅세;박정배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.125-133
    • /
    • 1993
  • Preflex composit girder is intended for a better use on both steel and concrete by introducting prestress into the lower flange concrete with preflection. In Korea, recently preflex bridges are widely used especially for urban construction but the design method depends on the conventional ASD(Allowable Stress Design). This paper suggests an optimization model for the design of preflex composite bridges based on LIFD(Load Resistance Factor Design). The optimization algorithm adopted for the NLP model proposed in the paper is the FTM(Flexible Tolerance Method) which is very efficient for the approximate continuous optimization. For the discrete optimum results, a pesudo discrete optimization is used for the economical round-up to the available dimensions. The economic effectiveness of optimum design based on the LRFD method is investigation by comparing the results with those of the ASD method. Based on applications to the actual design examples, it may be concluded that the optimization model suggested in the paper provides economical but reliable design. And the suggested in the paper provides economical but reliable design. And the computer code for the automatic optimum design of preflex bridges developed in the paper for a CAD system may be successfully used in practice.

  • PDF