• 제목/요약/키워드: load Q

Search Result 373, Processing Time 0.018 seconds

Lubricating Properties on Tribo-Coating of Soft Metals in Ultra High Vacuum (초고진공중에서 연질금속의 Tribo-Coating에 관한 윤활특성)

  • 김형자;전태옥;가등건가
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.18-28
    • /
    • 1994
  • Sliding friction between a spherical pin of 8mm in diameter and flat (disk) substrates coated with vacuum-deposited thin film was measured under ultra high vacuum pressure for various materials, various rates of film supply (8~210 nm/min), various sliding velocities (1.5~67.0 mm/s). It was found that the most effective lubrication was obtained when the adhesion between $Si_3N_4$ pin and SUS440C disk was high and that between $Si_3N_4$ pin and $Si_3N_4$ disk was low. When In film was used as a lubricant between $Si_3N_4$ pin and stainless steel disk, the friction coefficient had a value as low as 0.04. In this case, the normal load W and the sliding speed V were expressed as 10N and 24 mm/s for $10^{-6}Pa$. The dependence of $\mu$ on the thickness h of the Ag film, which was used as a lubricant between $Si_3N_4$ pin and SUS440C (Q) disk was expressed as $\mu$=0.12 for W=10N and V=24mm/s when the film was thicker than 100nm. A brief discussion on these relations is presented from the viewpoint of the real contact area.

Modeling and Control of Integrated STATCOM-SMES System to Improve Power System Oscillations Damping

  • Molina, Marcelo G.;Mercado, Pedro E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.528-537
    • /
    • 2008
  • Primary frequency control(PFC) has the ability to regulate short period random variations of frequency during normal operation conditions and also to respond rapidly to emergencies. However, during the past decade, numerous significant sized blackouts occurred worldwide that resulted in serious economic losses. Therefore, the conclusion has been reached that the ability of the current PFC to meet an emergency is poor, and security of power systems should be improved. An alternative to enhance the PFC and thus security is to store excessive amounts of energy during off-peak load periods in efficient energy storage systems for substituting the primary control reserve. In this sense, superconducting magnetic energy storage(SMES) in combination with a static synchronous compensator(STATCOM) is capable of supplying power systems with both active and reactive powers simultaneously and very rapidly, and thus is able to enhance the security dramatically. In this paper, a new concept of PFC based on incorporating a STATCOM-SMES is presented. A complete detailed model is proposed and a new control scheme is designed, comprising an enhanced frequency control scheme, and a fully decoupled current control strategy in d-q coordinates with a novel controller to prevent dc bus capacitors voltage drift/imbalance. The performance of the proposed control schemes is validated through digital simulation carried out using MATLAB/Simulink.

Fabrication and Electrical Characteristics of a hexagon-type piezoelectric transformer (육각형 압전변압기의 제조 및 전기적 출력 특성)

  • 이종필;홍진웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.149-153
    • /
    • 2003
  • In this paper, a hexagon-type piezoelectric transformer was investigated to increase the output power. The length of its side was 14mm and 17.5[mm], respectively. The piezoelectric ceramics was composed to PZT-PMN-PSN. This composition showed the characteristics which had an about 1200 of the mechanical Q-factor, 0.55 of the electromechanical coupling coefficient, 320 x 10$\^$-12/ C/N of the piezoelectric constant d$\sub$33/, 0.3% of the dissipation factor, etc. The voltage step-up ratio increased with increasing the load resistance, Rt., so it reached 80 with R$\sub$L/ of l[M$\Omega$] and was proportion to the length of side of the hexagon-type piezoelectric transformer.

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Wind effects on a large cantilevered flat roof: loading characteristics and strategy of reduction

  • Fu, J.Y.;Li, Q.S.;Xie, Z.N.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.357-372
    • /
    • 2005
  • Mean and extreme pressure distributions on a large cantilevered flat roof model are measured in a boundary layer wind tunnel. The largest peak suction values are observed from pressure taps beneath conical "delta-wing type" corner vortices that occur for oblique winds, then the characteristics and causes of the local peak suctions are discussed in detail. Power spectra of fluctuating wind pressures measured from some typical taps located at the roof edges under different wind directions are presented, and coherence functions of fluctuating pressures are also obtained. Based on these results, it is verified that the peak suctions are highly correlated with the conical vortices. Furthermore, according to the characteristics of wind loads on the roof, an aerodynamic solution to minimize the peak suctions by venting the leading edges and the corners of the roof is recommended. The experimental results show that the suggested strategy can effectively control the generation of the conical vortices and make a reduction of 50% in mean pressures and 25% in extreme local pressures at wind sensitive locations on the roof.

The Implementation of a Discrete PI Speed Controller for an Induction Motor (유도전동기용 이상 PI형 속도제어기의 구성)

  • 김광배;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.1
    • /
    • pp.26-35
    • /
    • 1986
  • In this paper, non-linear state equations for a 3-phase, 220V, 0.4 KW, squirrel cage induction motor have been derived using the d-q transformation and then these equations have been linearized around an operating point by a small perturbation method. Root loci on the s-plane with repect to the changes of slip S and supply frequency f have been studied. Based on the above results, the derived linear state equations have been augmented to the 6th order, including the output velocity feedback and a discrete PI speed controller. Using the new state equations, stability regions on the Kp-Kl plane have been investigated for slip S and sampling time T. In designing a discrete PI controller, the coefficients Kp and Kl around the normal operating point (220V,1,692rpm,60Hz)have been chosen under the assumptions that each response to a perturbation input of reference speed and load torque be underdamped and dominated by a pair of complex poles. Step responses in the experimental system using an Intel SDK-86 and an optimized PWM inverter show satisfactory results that the maximum overshoots and damped frequency are well coincided with ones from the computer simulation.

  • PDF

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches

  • Ozsahin, Talat Sukru
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.383-403
    • /
    • 2007
  • The contact problem for an elastic layer resting on an elastic half plane is considered according to the theory of elasticity with integral transformation technique. External loads P and Q are transmitted to the layer by means of two dissimilar rigid flat punches. Widths of punches are different and the thickness of the layer is h. All surfaces are frictionless and it is assumed that the layer is subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane will be continuous, if the value of load factor, ${\lambda}$, is less than a critical value, ${\lambda}_{cr}$. However, if tensile tractions are not allowed on the interface, for ${\lambda}$ > ${\lambda}_{cr}$ the layer separates from the interface along a certain finite region. First the continuous contact problem is reduced to singular integral equations and solved numerically using appropriate Gauss-Chebyshev integration formulas. Initial separation loads, ${\lambda}_{cr}$, initial separation points, $x_{cr}$, are determined. Also the required distance between the punches to avoid any separation between the punches and the layer is studied and the limit distance between punches that ends interaction of punches, is investigated. Then discontinuous contact problem is formulated in terms of singular integral equations. The numerical results for initial and end points of the separation region, displacements of the region and the contact stress distribution along the interface between elastic layer and half plane is determined for various dimensionless quantities.