• Title/Summary/Keyword: liver microsomes

검색결과 180건 처리시간 0.027초

엄나무 유래 신규 항산화 활성물질 (Antioxidants Isolated from Kalopanax pictus)

  • 김영희
    • 한국자원식물학회지
    • /
    • 제11권
    • /
    • pp.89-109
    • /
    • 1998
  • Screening of new antioxidants form oriental medicines resulted in the isolation of a new antioxidative compound and eight known compounds from the stem bark of Kalopanax pictus. On the basis of various spectrosopic studies, the structure of the new compound was determined to be 4-rhamnose-3,5-dimethoxybenzoic acid methly ester. Other known compounds were identified as ferulic acid, 4,5,6,-trihydroxyflavanone, 2', 4',4' -trihydroxychalcone, caffeic acid, coniferyl alcohol, syringin, 1,3-di-O-caffeoylquinic acid. These compounds showed lipid peroxidation inhibitory acitivity in rat liver microsomes and free radical scavenging acitivity.

  • PDF

쥐 간에서의 Ginsenoside의 세포내 분포와 대사 (Cellular Distribution and Metabolism of Ginsenosides in Rat Liver)

  • 윤수희;이희봉
    • Journal of Ginseng Research
    • /
    • 제17권2호
    • /
    • pp.114-122
    • /
    • 1993
  • 0.5 mg of natural ginsenoside mixture and 0.8 $\mu$Ci of synthesized 14C-ginsenosides were administered orally to a rat and killed at one hour after the ginsenoside administration and the liver was fractionated into nuclear fraction, mitrochondria microsomes and cytosol fraction. Radioactivity distribu lion in subcellular fractions of the liver showed that 32o1c of total radioactivity absorbed in the liver was in cytosol fraction but a significant portion of the radioactivity was also found in mitochondria (26.6%) and microsomal fraction (18.l%). 5.8% of the total radioactivity was recovered from the nuclear fraction as well. This suggested that ginsenosides might be distributed into all subcellular fractions. Activities of mitochondrial aldehyde dehydrogenase, lactate dehydrogenase and malate dehydrogenase of the liver of rat at two hours after the ginsenoside administraion were found appreciably stimulated, suggesting that the ginsenoside concentration in the liver might be around 10-5%, since optimum concentrations for most enzyme catalyzed reactions in vitro were known to be 10-6% 10-4%. A significant portion of the radioactivity recovered from subcellular fractions of the liver was found in protein fractions, suggesting that proteins might interact with ginsenosides. Examination of protein-ginsenoside interation by gel filtration, equilibrium dialysis and amonium sulfate precipitation technique suggesting that proteins and ginsenosides do not bound covalently but weakl\ulcorner combined. When purified ginsenoside Rbl and Rgl were incubated with rat liver cytosolic enzymes for 20 min, the above ginsenosides were hydrolyzed quickly, suggesting that ginsenosides might be rapidly hydrolyzed and metabolized in the liver. It was also observed in vitro that the ginsenosides such as Rbl and Rgl were easily hydrolyzed by rat liver cytosol preparation suggesting that absorbed ginsenosides might be quickly hydrolyzed and metabolized in the liver.

  • PDF

Effects of Intravenous Administration of Taurocholic Acid on Hepatic Monoamine Oxidase A and B Activities in Rats with Choledocho-Caval Shunt

  • ;;;곽춘식
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.91-97
    • /
    • 2006
  • The effects of intravenous administration of high concentration of taurocholic acid (TCA) on monoamine oxidase (MAO) A and B activities in rat liver mitochondria and microsomes were studied. These liver subcellular organelles and serum MAO activities were determined from the experimental rats with choledocho-caval shunt (CCS). The Michaelis-Menten constants in these hepatic enzymes were also measured. The activities of mitochondrial MAO A and B, and microsomal MAO B as well as their $V_{max}$ values were found to be decreased significantly in CCS plus TCA injected group then in the control group, such as CCS alone groups. However their $K_m$ values in the experimental groups did not vary. MAO of serum appeared in the CCS plus TCA injected groups only. The above results suggest that TCA represses biosynthesis of the MAO in the liver. The MAO of serum is believed to be caused by the increment of membrane permeability of hepatocytes upon TCA mediated liver cell necrosis.

  • PDF

In Vivo 레벨에서 1-아닐리노-8-나프탈렌 설포네이트(ANS)의 간내 이행 및 담즙배설 과정의 속도론적 해석 (Kinetic Analysis of the Hepatic Uptake and Biliary Excretion of 1-Anilino-8-Naphthalene Sulfonate (ANS) in Vivo)

  • 배웅탁;정연복;한건
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.209-216
    • /
    • 2001
  • The purpose of the present study was to investigate the hepatic uptake and biliary excretion of l-anilino-8-naphthalene sulfonate (ANS) in vivo. The plasma concentration and liver concentration of ANS were determined after its i.v. bolus administration at a dose of $30\;{\mu}mol/kg$ in rats. The hepatic uptake clearance $(CL_{uptake})$ of ANS was 0.1 ml/min/g liver. On the basis of the unbound concentration of ANS, the permeability-surface area product $(PS_{influx})$ was calculated to be l0.4 ml/min/g liver, being comparable of in vitro data. On the other hand, we determined the plasma concentration, liver concentration and biliary excretion rate of ANS at steady-state after its i. v. infusion $(0.2-1.6\;{\mu}mol/min/kg)$ in rats. The excretion clearance $(CL_{excretion})$ of ANS showed Michaelis-Menten kinetics with increasing the infusion rate. The permeability-surface area product $(PS_{excretion})$ based on the unbound concentration in the liver was calculated to be 0.0165 ml/min/g liver, which is negligible compared with the intrinsic clearance $(CL_{int}=3.3\;ml/min/g\;liver)$ by rat liver microsomes. The sequestration process of ANS, therefore, was considered to be mainly due to the metabolic process in the liver $(PS_{seq}{\risingdotseq}CL_{int})$. Furthermore, $PS_{efflux}$ value calculated from $PS_{influx}$ and $PS_{seq}$ was 4.4 ml/min/g liver, which was comparable of in vitro data. In conclusion, in vivo parameters such as $PS_{influx}$, $PS_{efflux}$ and $PS_{seq}$ in the present study showed good in vivo-in vitro relationship. Thus, the kinetic analysis method proposed in the present study would be useful to analyze the hepatic transport of drugs in vivo.

  • PDF

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

이공산(異功散)의 세포보호 및 항산화 작용 (Cytoprotective and Antioxidative Effects of Crude Drug Preparation (E-kong-san))

  • 이경태;최정혜;노영수;안규석;장성구;오수명;정지창
    • 생약학회지
    • /
    • 제30권3호
    • /
    • pp.255-260
    • /
    • 1999
  • In the previous report, E-kong-san, which is usually used for recovering health in traditional medicine, has been shown to decrease cisplatin induced nephrotoxicity in vivo and in vitro. The significant reduction of E-kong-san on the cisplatin induced nephrotoxicity led us to investigate whether the effect of this water extract was a result of triggering antioxidation. In monkey kidney Vero cells, E-kong-san at $5{\sim}10\;mg/ml$ was able to attenuate 2mM cisplatin-stimulated cell death by 46.8% and 31.8%, respectively. E-kong-san showed strong free radical scavengering activities on 1,1-diphenyl-2-picrylhydrazil (DPPH) radical and xanthine/xanthine oxidase (XOD) generated superoxide anion radical $(O_2^{-.})$. We further studied the effects of E-kong-san on lipid peroxidation in rat liver microsomes induced by enzymatic and nonenzymatic methods. Moreover, E-kong-san exhibited significant inhibition on both ascorbic $acid/Fe^{2+}$ and $ADP/NADPH/Fe^{3+}$ induced lipid peroxidation in rat liver microsomes. Based on these results, we suggest that E-kong-san protects the cisplatin induced cytotoxicity by its antioxidative mechanism.

  • PDF

Identification of ML106 Phase 1 Metabolites in Human Liver Microsomes Using High-Resolution Quadrupole-Orbitrap Mass Spectrometry

  • Jo, Jun Hyeon;Nam, WoongShik;Kim, Sunjoo;Lee, Doohyun;Min, Kyung Hoon;Lee, Taeho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제7권3호
    • /
    • pp.69-73
    • /
    • 2016
  • High-resolution quadrupole-Orbitrap mass spectrometry (HRMS), with high-resolution (> 10,000 at full-width at half-maximum) and accurate mass (< 5 ppm deviation) capabilities, plays an important role in the structural elucidation of drug metabolites in the pharmaceutical industry. ML106, a derivative of imidazobenzimidazole, decreased melanin content and tyrosinase activity in a dose-dependent manner. Here, we investigated the phase 1 metabolic pathway of ML106 using HRMS in human liver microsomes (HLMs) and recombinant cDNA-expressed cytochrome P450 (CYP). After the incubation of ML106 with pooled HLMs and recombinant cDNA-expressed CYP in the presence of NADPH, five phase 1 metabolites, including three mono-hydroxylated metabolites (M1-3) and two di-hydroxylated metabolites (M4 and M5), were investigated. The metabolite structures were postulated by the elucidation of protonated mass spectra using HRMS. The CYP isoforms related to the hydroxylation of ML106 were studied after incubation with recombinant cDNA-expressed CYP. Here, we identified the phase 1 metabolic pathway of ML106 induced by CYP in HLMs.

엉겅퀴로부터 분리 정제한 Silymarin 및 Silybin의 지질 과산화에 대한 항산화 효과 (Antioxidative Effects of Silymarin and Silybin Purified from Silybum marianum on Lipid Peroxidation)

  • 이백천;박종옥;류병호
    • 한국식품영양학회지
    • /
    • 제10권1호
    • /
    • pp.37-43
    • /
    • 1997
  • 본 연구는 지질의 과산화에 대한 항산화 효과를 조사하기 위하여 엉겅퀴(Silybum marianum)로부터 silymarin 및 silybin을 정제하여 실험하였다. Silymarin 및 silybin은 xanthine oxidase system에서 superoxide anion의 생성을 억제하였다. 쥐의 간 mitochondria에서는 silymarin 및 silybin은 reduced nicotinamide adenine dinucleotide phosphate(NADPH)에 의해 효과적 또는 ascorbic acid 또는 Fenton's reagent에 의하여 비효소적으로 유도되는 지질의 과산화를 억제하였다. 또 mitochondria의 지질과산화도 silymarin 및 silybin에 의하여 억제되었고 NADPH 의존 cychrome P-450 reductase에 의한 Fe2+의 산화도 silymarin 및 silybin에 의하여 억제되었다. Silymarin 및 silybin은 microsome의 효소 시스템 및 linoleic acid hydroperoxide induced peroxidation system에서 지질의 과산화의 연쇄반응에서 유리기의 억제효과가 있었다.

  • PDF

(${\alpha}$-linolenic acid가 Eicosapentaenoic acid와 Docosahexaenoic acid로 전환되는데 미치는 마그네슘과 칼슘의 영향 (Effect of Magnesium and Calcium on the Interconversion of ${\alpha}$-linolenic acid to Eicosapentaenoic acid and Docosahexaenoic acid)

  • 남현근
    • 한국응용과학기술학회지
    • /
    • 제11권2호
    • /
    • pp.129-138
    • /
    • 1994
  • In order to investigate of the Influence of $Mg^{2+}$, $Ca^{2+}$ on ${\alpha}$-linolenic acid converted into the eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) forming in plasma lipid and in liver microsomes of rabbit, the animals were fed on the perila oil rich ${\alpha}$-linolenic acid or sardine oil rich EPA and DBA diet for 4 weeks were examined. In plasma, liver lipid, $Mg^{2+}$ was influenced on arachidonic acid(AA), EPA, DHA formative from ${\alpha}$-linolenic acid in perilla oil, but stearic acid was increased, $Ca^{2+}$ was Influenced on stearic acid increased and DHA was decreased. In phospholipid, $Mg^{2+}$, $Ca^{2+}$ was influenced on stearic acid increased and DHA was decreased in perilla oil.

Orotic acid 유발 지방간 rat 와 mouse의 중성지질 대사 (Effect of Dietary Orotic Acid on Triglyceride Metabolism in Rats and Mice)

  • 조영수;차재영
    • 생명과학회지
    • /
    • 제6권3호
    • /
    • pp.159-164
    • /
    • 1996
  • Effects of 1% dietary orotic acid on triglyceride metabolism were examined in SD-rats and Kud: ddY mice. When rats were fed semisynthetic diet containing 1% orotic acid and n-6 polyunsaturated fatty acid (linoleic acid), the hepared diet. In contrast to rats which respond to orotic acid consumption with increases in hepatic triglyceride content, mice did not so respond. The rats-limiting step in triglyceride synthesis is catalyzed by the enzyme phosphatic acid phosphohydrolase (EC3.1.3.4) which is present in the liver cytosol and microsomes of rats fed oroic acid diet. This finding suggests that the activity of this enzyme may play a tole in the fatty liver formation in rats.

  • PDF