• 제목/요약/키워드: liver imaging

검색결과 419건 처리시간 0.02초

Comparison Analysis of Donor Liver Volumes Estimated with 3D Magnetic Resonance and 3D Computed Tomography Image Data

  • Kim, Myeong-Seong;Park, Kyeong-Seok;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.261-265
    • /
    • 2014
  • Three-dimensional computed tomography is an effective tool to estimate the liver volume of living donors for the live liver transplantation. When additional operation is required, magnetic resonance imaging is conducted to determine the safety of the donor. This study compared the accuracy of magnetic resonance imaging and computed tomography in estimating 3D liver volume of 23 male and 7 female donors who underwent both magnetic resonance imaging and computed tomography tests before the transplantation. The analysis was conducted to see whether the liver's estimated total volumes and the left lobe volumes obtained from 3D-magnetic resonance imaging and 3D-computed tomography were identical. Volumes of the right lobe estimated with 3D-magnetic resonance imaging and 3D-computed tomography were compared with the actual volume of the right lobe harvested in the operating room because the volume of the right lobe is an important determinant in the safety of the donor. The total volume of the liver estimated from 3D-magnetic resonance imaging and 3D-computed tomography differed (1238.1904 units and 1402.364 units respectively). The left lobe volume of the liver estimated with 3D-magnetic resonance imaging and 3D-computed tomography also differed (450.530 units and 554.490 units, respectively). The right lobe volume of the liver estimated with 3D-magnetic resonance imaging and 3D-computed tomography were 787.660 units and 847.545 units, respectively, while the actual average right lobe volume of the harvested liver was 678.636 units. 3D-computed tomography has been widely used to estimate the right lobe volume of the donors' liver. However, 3D-magnetic resonance imaging was also very effective in estimating the volume of the liver. Thus, 3D-magnetic resonance imaging is also expected to become an important tool in determining the safety of the donors before transplantation.

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

Hepatic Cavernous Hemangioma in Cirrhotic Liver: Imaging Findings

  • Jeong-Sik Yu;Ki Whang Kim;Mi-Suk Park;Sang-Wook Yoon
    • Korean Journal of Radiology
    • /
    • 제1권4호
    • /
    • pp.185-190
    • /
    • 2000
  • Objective: To document the imaging findings of hepatic cavernous hemangioma detected in cirrhotic liver. Materials and Methods: The imaging findings of 14 hepatic cavernous hemangiomas in ten patients with liver cirrhosis were retrospectively analyzed. A diagnosis of hepatic cavernous hemangioma was based on the findings of two or more of the following imaging studies: MR, including contrast-enhanced dynamic imaging (n = 10), dynamic CT (n = 4), hepatic arteriography (n = 9), and US (n = 10). Results: The mean size of the 14 hepatic hemangiomas was 0.9 (range, 0.5-1.5) cm in the longest dimension. In 11 of these (79%), contrast-enhanced dynamic CT and MR imaging showed rapid contrast enhancement of the entire lesion during the early phase, and hepatic arteriography revealed globular enhancement and rapid filling-in. On contrast-enhanced MR images, three lesions (21%) showed partial enhancement until the 5-min delayed phases. US indicated that while three slowly enhancing lesions were homogeneously hyperechoic, 9 (82%) of 11 showing rapid enhancement were not delineated. Conclusion: The majority of hepatic cavernous hemangiomas detected in cirrhotic liver are small in size, and in many, hepatic arteriography and/or contrast-enhanced dynamic CT and MR imaging demonstrates rapid enhancement. US, however, fails to distinguish a lesion of this kind from its cirrhotic background.

  • PDF

Comparison of Three, Motion-Resistant MR Sequences on Hepatobiliary Phase for Gadoxetic Acid (Gd-EOB-DTPA)-Enhanced MR Imaging of the Liver

  • Kim, Doo Ri;Kim, Bong Soo;Lee, Jeong Sub;Choi, Guk Myung;Kim, Seung Hyoung;Goh, Myeng Ju;Song, Byung-Cheol;Lee, Mu Sook;Lee, Kyung Ryeol;Ko, Su Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권2호
    • /
    • pp.71-81
    • /
    • 2017
  • Purpose: To compare three, motion-resistant, T1-weighted MR sequences on the hepatobiliary phase for gadoxetic acid-enhanced MR imaging of the liver. Materials and Methods: In this retrospective study, 79 patients underwent gadoxetic acid-enhanced, 3T liver MR imaging. Fifty-nine were examined using a standard protocol, and 20 were examined using a motion-resistant protocol. During the hepatocyte-specific phase, three MR sequences were acquired: 1) gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA); 2) radial GRE with the interleaved angle-bisection scheme (ILAB); and 3) radial GRE with golden-angle scheme (GA). Two readers independently assessed images with motion artifacts, streaking artifacts, liver-edge sharpness, hepatic vessel clarity, lesion conspicuity, and overall image quality, using a 5-point scale. The images were assessed by measurement of liver signal-to-noise ratio (SNR), and tumor-to-liver contrast-to-noise ratio (CNR). The results were compared, using repeated post-hoc, paired t-tests with Bonferroni correction and the Wilcoxon signed rank test with Bonferroni correction. Results: In the qualitative analysis of cooperative patients, the results for CAIPIRINHA had significantly higher ratings for streak artifacts, liver-edge sharpness, hepatic vessel clarity, and overall image quality as compared to, radial GRE, (P < 0.016). In the imaging of uncooperative patients, higher scores were recorded for ILAB and GA with respect to all of the qualitative assessments, except for streak artifact, compared with CAIPIRINHA (P < 0.016). However, no significant differences were found between ILAB and GA. For quantitative analysis in uncooperative patients, the mean liver SNR and lesion-to-liver CNR with radial GRE were significantly higher than those of CAIPIRINHA (P < 0.016). Conclusion: In uncooperative patients, the use of the radial GRE sequence can improve the image quality compared to GRE imaging with CAIPIRINHA, despite the data acquisition methods used. The GRE imaging with CAIPIRINHA is applicable for patients without breath-holding difficulties.

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • 제20권4호
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.

Hydrodynamic-based Procedure를 이용한 간에서의 HSV1-tk 발현 확인을 위한 방사표지 5-(2-iodovinyl)-2'-deoxyuridine (IVDU)의 영상연구 (Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in liver by Hydrodynamic-based Procedure)

  • 송인호;이태섭;강주현;이용진;김광일;안광일;정위섭;천기정;최창운;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권5호
    • /
    • pp.468-477
    • /
    • 2009
  • 목적: Hydrodynamic-based procedure는 손쉽고 간편한 비바이러스성 유전자 전달 방법으로 특히 간특이적으로 발현하는 특징을 가진다. 단순 헤르페스 바이러스 제 1 형 티미딘 키나제(herpes simplex virus type 1 thymidine kinase, HSV1-tk)와 다양한 기질을 이용한 비침습적 HSV1-tk 유전자 영상시스템이 널리 연구되어왔다. 본 연구에서는 HSV1-tk 유전자를 hydrodynamic-based procedure를 이용하여 전달한 후, HSV1-tk의 보고 기질로 알려진 5-(2-iodovinyl)-2'-deoxyuridine (IVDU)을 이용하여 간 특이적인 HSV1-tk 유전자 발현 영상을 획득하고자 하였다. 대상 및 방법: HSV1-tk 유전자와 녹색형광유전자를 가진 각 플라스미드 벡터를 마우스에 hyodynaminc injection을 통해 전달하고, 24 시간 뒤 유전자의 발현을 확인하기 위해 RT-PCR, 생체형광영상, 핵의학영상, 전신자가방사영상 그리고 생체분포를 시행하였다. 결과: 각 플라스미드 벡터를 전달한 간으로부터 추출한 전체 RNA를 이용하여 RT-PCR을 수행한 결과, 각각 HSV1-tk유전자와 녹색형광단백 유전자의 특이적인 밴드를 관찰할 수 있었다. 생체 분포 결과, pHSV1-tk 벡터를 전달한 마우스의 간에서 특이적인 [$^{123}I$]IVDU의 섭취를 보였다. 생체형광영상에서는pEGFP-N1 벡터를 전달한 마우스의 간에서는 유의한 형광신호를 나타내었다. 전신자가방사영상과 감마카메라 영상에서 pHSV1-tk 벡터를 전달한 마우스의 간에서 방사표지 IVDU가 국소적으로 집적되는 것을 확인하였다. 결론: 본 연구에서 hydrodynamic-based procedure는 간특이적으로 플라스미드 DNA를 전달하는데 효과적이며 전달된 유전자의 발현을 분자영상학적인 방법으로 확인하였다. 따라서 Hydrodynamic injection을 통해 HSV1-tk유전자와 목적 유전자의 공동발현은 방사표지 IVDU에 의해 목적 유전자의 발현을 정량평가하는데 유용할 것으로 기대된다.

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • 제25권1호
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

국소 간 종양의 조직적 특성을 평가하는데 있어 최근 핵의학의 역할 (Changing Role of Nuclear Medicine for the Evaluation of Focal Hepatic Tumors: From Lesion Detection to Tissue Characterization)

  • 김천기;윤미진
    • 대한핵의학회지
    • /
    • 제32권3호
    • /
    • pp.211-224
    • /
    • 1998
  • The role of scintigraphic imaging has moved from the detection of lesions to the tissue-specific characterization of lesions over the past 2 decades. Major advances in nuclear medicine imaging include: 1) positron imaging, 2) improved instrumentation, such as the use of multidetector (dual or triple head) gamma cameras for single photon emission computed tomography, and 3) development of numerous new radiopharmaceuticals for positron or single photon imaging (labeled glucose analogue, amino acids, fatty acids, hormones, drugs, receptor ligands, monoclonal antibodies, etc). These advances have resulted in a significantly improved efficacy of radionuclide techniques for the evaluation of various tumors, including those within the liver. The current role of nuclear medicine in the evaluation of focal hepatic tumors is reviewed in this article with an emphasis on the clinical applications of various tracer studies and imaging findings.

  • PDF

Hepatic encephalopathy on magnetic resonance imaging and its uncertain differential diagnoses: a narrative review

  • Chun Geun Lim;Myong Hun Hahm;Hui Joong Lee
    • Journal of Yeungnam Medical Science
    • /
    • 제40권2호
    • /
    • pp.136-145
    • /
    • 2023
  • Hepatic encephalopathy (HE) is a severe neuropsychiatric abnormality in patients with either acute or chronic liver failure. Typical brain magnetic resonance imaging findings of HE are bilateral basal ganglia high signal intensities due to manganese deposition in chronic liver disease and hyperintensity in T2, fluid-attenuated inversion recovery, or diffusion-weighted imaging (DWI) with hemispheric white matter changes including the corticospinal tract. Low values on apparent diffusion coefficient mapping of the affected area on DWI, indicating cytotoxic edema, can be observed in acute HE. However, neuropsychological impairment in HE ranges from mild deficits in psychomotor abilities affecting quality of life to stupor or coma with higher grades of hepatic dysfunction. In particular, the long-lasting compensatory mechanisms for the altered metabolism in chronic liver disease make HE imaging results variable. Therefore, the clinical relevance of imaging findings is uncertain and differentiating HE from other metabolic diseases can be difficult. The recent introduction of concepts such as "acute-on-chronic liver failure (ACLF)," a new clinical entity, has led to a change in the clinical view of HE. Accordingly, there is a need to establish a corresponding concept in the field of neuroimaging diagnosis. Herein, we review HE from a historical and etiological perspective to increase understanding of brain imaging and help establish an imaging approach for advanced new concepts such as ACLF. The purpose of this manuscript is to provide an understanding of HE by reviewing neuroimaging findings based on pathological and clinical concepts of HE, thereby assisting in neuroimaging interpretation.