• Title/Summary/Keyword: live loads

검색결과 160건 처리시간 0.028초

교량구조물의 합리적인 설계하중 결정 및 설계기준 (Realistic Determination of Design Loads and Design Criteria for Bridge Structures)

  • 오병환
    • 대한토목학회논문집
    • /
    • 제11권4호
    • /
    • pp.55-66
    • /
    • 1991
  • 본 논문에서는 교량의 합리적인 설계하중결정과 설계기준을 유도하기 위한 연구를 수행하였다. 현행의 설계기준은 하중과 부재저항의 불확실성을 합리적으로 고려하지 못하고 있어 교량의 지간길이에 따라 안전도 수준이 서로 다르게 나타나고 있다. 따라서, 본 논문에서는 교량의 일반적인 지간길이에 따라 일정한 안전도수준을 갖을 수 있는 교량의 합리적인 설계하중과 설계기준을 유도하여 제시하였다. 본 연구에서 제시한 설계하중은 우리나라 도로상의 실제 통행차량 조사자료에 근거하였으며, 이에 따른 설계기준도 진보된 개념의 하중-저항계수형식으로 유도하였다. 또한, 통행량증가에 따른 영향을 고려하기 위하여 통행량에 따른 활하중계수를 유도하였다. 본 논문에서 유도된 설계하중과 설계기준은 교량의 지간길이에 따라 일정한 안전도로수준을 나타내고 있으며, 활하중 증가에 따른 영향을 합리적으로 고려하고 있어 앞으로 우리나라 도로설계기준에 유용한 자료를 제공할 것으로 사료된다.

  • PDF

노후 강교량의 보수.보강 용접부의 피로강도에 대한 실험적 연구 (An Experimental Investigation on the Fatigue Strength of Replacement Repair Butt-Welded Joints of Steel Structural after a period of Prolonged Service)

  • 장경호;최의홍;이진형;이진희;장갑철;양영진
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.277-279
    • /
    • 2006
  • Due to the numerous environmental factors, cracks and corrosion are frequently occured especially in old steel bridge, which deteriorate the structural integrity; thus bring about the problems of structural safety of the steel bridge. Therefore, repair and reinforcement are required for the damaged structure. the replacement repair welding method is spotlighted for its brilliant features, i.e. it can be achieved without incurring traffic dislocation. the method cuts the damaged parts and replaces them with new steel plate by welding under live loads. However, the mechanical behavior of the welded joints under cyclic loads due to the traffic which passes along bridge is not clarified. In this paper, the fatigue strength of the replacement repair welded joints was investigated in order to improve reliability in the repair welded joints of old steel bridge.

  • PDF

철도교량용 고무패드의 특성 및 강성 추정기법 (The Characteristics and Estimated Stiffness of Rubber Pads for Railway Bridges)

  • 최은수;김현민;오지택;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.115-122
    • /
    • 2005
  • This study analyzed the characteristics of four kinds of bridge rubber pads and suggested how to determine the stiffness the pads. The stiffness of rubber pads can be estimated by a direct static test. In the procedure to estimate the stiffness of a pad, the dead load(preload) of a bridge and live load of a vehicle are considered. The polyurethane rubber pads have larger hardness than natural and chloroprene rubber pads and thus carry larger load bearing capacity. In addition, they showed higher stiffness with the same shape factor than the others and thus are more avaliable as for bridge bearings. Although natural and chloroprene rubber pads are elongated to large deformation in horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless to the thickness and hardness of the pads. Therefore, they do not need reinforced plate to restrict horizontal deformation.

  • PDF

바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구 (Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

Comparative Evaluation of Structural Systems for Tilted Tall Buildings

  • Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.89-98
    • /
    • 2014
  • Employing tilted forms in tall buildings is a relatively new architectural phenomenon, as are the cases with the Gate of Europe Towers in Madrid and the Veer Towers in Las Vegas. This paper studies structural system design options for tilted tall buildings and their performances. Tilted tall buildings are designed with various structural systems, such as braced tubes, diagrids and outrigger systems, and their structural performances are studied. Structural design of today's tall buildings built with higher strength materials is generally governed by lateral stiffness. Tilted towers are deformed laterally not only by lateral loads but also by dead and live loads due to their eccentricity. The impact of tilting tall buildings on the gravity and lateral load resisting systems is studied. Comparative evaluation of structural systems for tilted tall buildings is presented.

단경간 폐복식 아치교의 축선에 관한 연구 (A Study on the Axis Line of Short Span Filled Spandrel Arch Bridge)

  • 구민세;황윤국;조현준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 1990
  • The behavior of short span filled spandrel arch bridge of 10 and 21 m span with various axis line, rise and backill height were investigated under the design loads(self weight, earth pressure, temperature load, live load, etc). Even though the behaviors of arch were known as relatively complicated, the followings can be concluded within the limits of this study. The design value of arch bridge increase as the rise decreases, the effects of temperature load become dominant for the design of arch bridge, and governing design factors are occured at springing.

  • PDF

Numerical Verification of B-WIM System Using Reaction Force Signals

  • Chang, Sung-Jin;Kim, Nam-Sik
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.637-647
    • /
    • 2012
  • Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.

실동하중에 의한 강판형교의 교통하중 분포 (The Distribution of the Normal Traffic Loads on the Steel Plate Girder Bridge)

  • 우상익;정경섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.103-111
    • /
    • 2000
  • The objectives of the study are to know the strain distribution and modal dynamic behaviour of steel bridge girders by actual traffic load. The live load effect depends on many parameters including the span length, gross vehicle weight, axle weight, axle configuration so on. For the estimation of static and dynamic characteristic, strain data caused by moving loads and traffic characteristics of passing vehicle under actual traffic load have measured using Bridge Weigh in Motion. To confirm the reliability of BWIM system, strain data measured using the $120{\Omega}$ strain gauge under the same condition. It is considered that the data acquired from BWIM system have reliability through the analysis and comparison between stress measured by strain data from BWIM and computed by FEM. Additionally according to the measured strain data of up-line and down-line on the highway, the up-line bridge grows more faster than the down-line bridge and girder 4 and 5 carry more load when vehicles pass the inner line and girder 2 and 3 does when vehicles pass the outer line as this case(the bridge composed with 5 girders).

  • PDF

Determination of the restoration effect on the structural behavior of masonry arch bridges

  • Altunisik, A.C.;Bayraktar, A.;Genc, A.F.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.101-139
    • /
    • 2015
  • In this paper, it is aimed to investigate the restoration effect on the structural behavior of masonry arch bridges. Dandalaz masonry arch bridge located on the 4km east of Karacasu town of Aydin, Turkey is selected as a numerical example. The construction year of the bridge is not fully known, but the bridge is dated back to 15th century. Considering the current situation, it can be easily seen that the structural elements such as arch, side walls and timber blocks are heavily damaged and the bridge is unserviceable. Firstly finite element model of the bridge is constituted to reflect the current situation (before restoration) using building survey drawings. After, restoration project is explained and finite element model is reconstituted (after restoration). The structural responses of the bridge are obtained before and after restoration under dead load, live load and dynamic earthquake loads. For both conditions, maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the restoration effect. From the study, it can be seen that the maximum internal forces are consisted under dynamic loads before and after restoration. Also, the restoration projects and studies have important and positive effects on the structural response of the bridge to transfer these structures to future.