• Title/Summary/Keyword: lithium metal

Search Result 333, Processing Time 0.019 seconds

The Electric Characteristics of Asymmetric Hybrid Supercapacitor Modules with Li4Ti5O11 Electrode (Li4Ti5O11 전극을 이용한 비대칭 하이브리드 슈퍼커패시터 전기적 모듈 특성)

  • Maeng, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.357-362
    • /
    • 2017
  • Among the lithium metal oxides for asymmetric hybrid supercapacitor, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. The pulverized LTO powder was observed to show the enhanced capacity from 120 mAh/g to 156 mAh/g at C-rate (10, 100 C). Hybrid supercapacitor module(48V, 416F) was fabricated using an asymmetric hybrid capacitor with a capacitance of 7500F. As a result of the measurement of C-rate characteristics, the module shows that the discharge time is drastically reduced at more than 50C, and the ESR and voltage drop characteristics are increased. The energy density and power density were reduced under high C-rate conditions. When designing asymmetric hybrid supercapacitor module, the C-rate and ESR should be considered As a result of measuring the 5 kw UPS, it was discharged at the current of 116A~170A during the discharge in the voltage range of 48V~30V, and the compensation time at discharge was measured to be about 33.2s. Experimental results show that it can be applied to applications related to stabilization of power quality by applying hybrid supercapacitor module.

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Design and Manufacture of Traveling-wave Electro-optic Modulator for X-band LFM Signal Generation (X-대역 LFM 신호생성을 위한 진행파형 전광변조기의 설계 및 제작)

  • Yi, Minwoo;Yoo, Sungjun;Bae, Youngseok;Jang, Sunghoon;Ryoo, Joonhyung;Shin, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.610-618
    • /
    • 2021
  • In this paper, a photonic-based microwave system technology is described, and a traveling-wave electro-optic modulator is designed and manufactured as a key component. The fabricated modulator is composed of a metal diffusion waveguide for optical transmission and a planar waveguide electrode on lithium niobate substrate for microwave transmission. The electro-optic response bandwidth of I and Q channels in a fabricated dual parallel Mach-Zehnder modulator were measured for 27.67 and 28.11 GHz, respectively. Photonic four times up-converted X-band frequency and linear frequency modulated signal were confirmed using the fabricated electro-optic modulator by S-band input signal. The confirmed broadband signal can be applied to a microwave system for surveillance and high-resolution ISAR imaging.

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method (공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화)

  • Kim, Minjeong;Hong, Soonhyun;Jeon, Heongkwon;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.216-222
    • /
    • 2022
  • The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2 Positive Electrode Materials by the Addition of nano-Al2O3 during the Synthetic Process (LiNi0.6Co0.2Mn0.2O2 양극 활물질의 합성공정 중 나노크기 알루미나 추가에 의한 고온수명 개선)

  • Park, Ji Min;Kim, Daeun;Kim, Hae Bin;Bae, Joong Ho;Lee, Ye-Ji;Myoung, Jae In;Hwang, Eunkyoung;Yim, Taeeun;Song, Jun Ho;Yu, Ji-Sang;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.80-86
    • /
    • 2016
  • High Ni content layered oxide materials for the positive electrode in lithium-ion batteries have high specific capacity. However, their poor electrochemical and thermal stability at elevated temperature restrict the practical use. A small amount of $Al_2O_3$ was added to the mixture of transition metal hydroxide and lithium hydroxide. The $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ was simultaneously doped and coated with $Al_2O_3$ during heat-treatment. Electrochemical characteristics of modified $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ were evaluated by the galvanostatic cycling and the LSTA(linear sweep thermmametry) at the constant voltage conditions. The nano-sized $Al_2O_3$ added materials show better cycle performance at elevated temperature than that of micro-sized $Al_2O_3$. As the added amount of nano-$Al_2O_3$ increased, the thermal stability of electrode also enhanced, but the use of 2.5 mol% Al showed the best high temperature performance.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF EMPRESS 2 CERAMIC AND TARGIS-VECTRIS CROWN

  • Cha Young-Joo;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.599-610
    • /
    • 2001
  • Due to an increasing interest in esthetics and concerns about toxic and allergic reactions to certain alloys, patients and dentists have been looking for metal-free tooth-colored restorations. Recent improvement in technology of new all-ceramic materials and composite materials has broadened the options for esthetic single crown restorations. The aim of this investigation was to study the fracture strength of the metal-free posterior single crowns fabricated using two recently introduced systems, Empress 2 ceramic and Targis-Vectris. Forty premolar-shaped stainless steel dies with the 1mm-wide circumferential shoulder were prepared. Ten cylindrical crowns having a diameter of 8.0mm and total height of 7.5mm were fabricated for each crown system respectively(PFM, Empress staining technique, Empress 2 layering technique, and Targis- Vectris). The crowns were filled with cement and placed on the stainless steel dies with firm finger pressure. The crowns were then stored in distilled water at room temperature for 24 hours before testing. The crowns were tested for fracture strength in an Instron universal testing machine (Instron 6022). With a crosshead speed of 1mm/min the center of the occlusal surface of the crown was loaded using a 4-mm-diameter stainless steel ball until fracture occurred. The fracture surfaces of the crowns were gold coated and examined using scanning electron microscopy(Jeol JSM-840 Joel Ltd., Akishima, Tokyo, Japan). Within the parameters of this study the following conclusions were drawn: 1. The mean fracture strength for PFM crowns was 5829(${\pm}906$)N; for Empress staining technique the fracture strength was 1697(${\pm}604$)N; for Empress 2 Layering technique the fracture strength was 1781N(${\pm}400$)N, and the fracture strength for Targis- Vectris was 3093(${\pm}475$)N. 2. The fracture strength of the PFM crowns was significantly higher than that of the Empress 2 and the Targis-Vectris crowns (P<0.05). 3. The fracture strength of the Targis-Vectris crowns was significantly higher than that of the Empress 2 crowns (P<0.05). 4. No statistical difference was found when Empress staining technique was compared with Empress 2 layering technique. 5. The SEM image of fracture surface of Empress 2 crown showed a very dense microstructure of the lithium disilicate crystals and the SEM image of fracture surface of Targis-Vectris crown showed indentations of Vectris and some fibers tom off from Vectris.

  • PDF

Rubidium Market Trends, Recovery Technologies, and the Relevant Future Countermeasures (루비듐 시장 및 회수 동향에 따른 향후 관련 대응방안)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.3-8
    • /
    • 2023
  • This study discussed production, demand, and future prospects of rubidium, which is an alkali group metal that is highly reactive to various media and requires carefulness in handling, but no significant environmental hazard of rubidium has been reported yet. Rubidium is used in various fields such as optoelectronic equipment, biomedical, and chemical industries. Because of difficulty in production as well as limited demand, the transaction price of rubidium is relatively high, but its detail information such as market status and potential growth is uncertain. However, if the mass production of versatile ultra-high-performance equipment such as quantum computers and the necessity of rubidium use in the equipment are confirmed, there is a possibility that the rubidium market will expand in the future. Rubidium is often found together with lithium, beryllium, and cesium, and may be present in granite containing minerals such as lepidolite and pollucite, as well as in seawater and industrial waste. Several technologies such as acid leaching, roasting, solvent extraction, and adsorption are used to recover rubidium. The maximum recovery efficiency of the rubidium from the sources and the processing above is generally high, but, in many practices, rubidium is not the main recovery target, and therefore the actual recovery effects should depend on presence of other valuable components or impurities, together with recovery costs, energy consumption, environmental issues, etc. In conclusion, although the current production and consumption of rubidium are limited, with consideration of the possible market fluctuations according to the emergence of large-scale demand sources, etc., further investigations by related institutions should be necessary.