• 제목/요약/키워드: literature material

검색결과 1,303건 처리시간 0.03초

The dynamic instability of FG orthotropic conical shells within the SDT

  • Sofiyev, Abdullah H.;Zerin, Zihni;Allahverdiev, Bilender P.;Hui, David;Turan, Ferruh;Erdem, Hakan
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.581-591
    • /
    • 2017
  • The dynamic instability of truncated conical shells subjected to dynamic axial load within first order shear deformation theory (FSDT) is examined. The conical shell is made from functionally graded (FG) orthotropic material. In the formulation of problem a dynamic version of Donnell's shell theory is used. The equations are converted to a Mathieu-Hill type differential equation employing Galerkin's method. The boundaries of main instability zones are found applying the method proposed by Bolotin. To verify these results, the results of other studies in the literature were compared. The influences of material gradient, orthotropy, as well as changing the geometric dimensions on the borders of the main areas of the instability are investigated.

A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations

  • Nebab, Mokhtar;Benguediab, Soumia;Atmane, Hassen Ait;Bernard, Fabrice
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.415-431
    • /
    • 2020
  • In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.

단계적 듣기 자료 개발.적용 (Development and application of listening materials)

  • 조병훈
    • 영어어문교육
    • /
    • 제3호
    • /
    • pp.43-54
    • /
    • 1997
  • According to Asher(1972) listening skill must be taught before any other skills. Despite such an importance of listening skill, listening tests taken at the secondary schools depend on simple multiple choice method. So more various method such as Task-Based Listening Test need suggesting. This study aims at (1) three step listening material development (2) and advancement of listening ability through the materials.

  • PDF

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권2호
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

Effect of material composition on bending and dynamic properties of FG plates using quasi 3D HSDT

  • Damani, Bakhti;Fekrar, Abdelkader;Selim, Mahmoud M.;Benrahou, Kouider Halim;Benachour, Abdelkader;Tounsi, Abdelouahed;Bedia, E.A. Adda;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.439-453
    • /
    • 2021
  • In this work, quasi three-dimensional (quasi-3D) shear deformation theory is presented for bending and dynamic analysis of functionally graded (FG) plates. The effect of varying material properties and volume fraction of the constituent on dynamic and bending behavior of the FG plate is discussed. The benefit of this model over other contributions is that a number of variables is diminished. The developed model considers nonlinear displacements through the thickness and ensures the free boundary conditions at top and bottom faces of the plate without using any shear correction factors. The basic equations that account for the effects of transverse and normal shear stresses are derived from Hamilton's principle. The analytical solutions are determined via the Navier procedure. The accuracy of the proposed formulation is proved by comparisons with the different 2D, 3D and quasi-3D solutions found in the literature.

Elasto-plastic damage modelling of beams and columns with mechanical degradation

  • Erkmen, R. Emre;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.315-323
    • /
    • 2017
  • Within the context of continuum mechanics, inelastic behaviours of constitutive responses are usually modelled by using phenomenological approaches. Elasto-plastic damage modelling is extensively used for concrete material in the case of progressive strength and stiffness deterioration. In this paper, a review of the main features of elasto-plastic damage modelling is presented for uniaxial stress-strain relationship. It has been reported in literature that the influence of Alkali-Silica Reaction (ASR) can lead to severe degradations in the modulus of elasticity and compression strength of the concrete material. In order to incorporate the effects of ASR related degradation, in this paper the constitutive model of concrete is based on the coupled damage-plasticity approach where degradation in concrete properties can be captured by adjusting the yield and damage criteria as well as the hardening moduli related parameters within the model. These parameters are adjusted according to results of concrete behaviour from the literature. The effect of ASR on the dynamic behaviour of a beam and a column are illustrated under moving load and cyclic load cases.

역방향 로지스틱스 : 과제 및 기존연구 (Reverse Logistics : Research Issues and Literature Review)

  • 이동호;김화중;김지수
    • 대한산업공학회지
    • /
    • 제34권3호
    • /
    • pp.270-288
    • /
    • 2008
  • Among various environmental issues, those for worn-out products are increasingly important due to rapid development and improvement of products, shortages of dumping sites and waste-incineration facilities, and legislation pressures and customer recognitions to protect the environment. Under such circumstances, collection and product recovery activities give rise to additional material flows from customers back to collectors and reprocessors. Reverse logistics, the opposite direction of the conventional forward logistics, is concerned with the management of this material flow. In this paper, we consider the emerging concept of reverse logistics. First, the concept of sustainable development is explained to explain the philosophical background of various environmental issues. Second, we explain the basics of reverse logistics, which includes the overall structure and the classification of network types. Finally, we review the previous research articles, especially in the aspect of industrial engineering, after classifying the decision problems into : (a) product recovery strategy; (b) network design and operation; (c) inventory management; (d) disassembly problems; and (e) remanufacturing problems.

에르고노믹 패션 디자인연구 - 바디컨셔스 액티브 스포츠웨어를 중심으로 - (A Study on Ergonomic Fashion Design - Focused on Body Conscious Active Sportswear -)

  • 김현주;나현신
    • 한국의류산업학회지
    • /
    • 제16권3호
    • /
    • pp.434-445
    • /
    • 2014
  • The meaning of this research is to make recognition for necessity of ergonomic fashion design research. And the purpose is to provide the guidelines for ergonomic fashion product development. For this, literature research and analysis of empirical illustration of product design indicating ergonomics characteristic are implemented. Among the body-conscious active sportswear, cycle wear, swim suit, and skin scuba wet suit were selected and analyzed. Then they were explained according to the ergonomics characteristics arranged previously. Lastly, the features of ergonomic fashion design were arranged by composition elements of the clothing such as pattern, sewing, material and detail. The characteristics of ergonomic design derived from literature and advanced researches are efficiency, usability, functionality and safety. Through research and analysis, the characteristics of ergonomic fashion design are as followings. In pattern, it is related to the 3D structure division pattern, the reduction pattern design, the closing & opening part design for easy detachment, the receipt and the changeable design. In sewing, it is related to the use of latest sewing techniques and the finish using silicon or rubber band. In material, it is related to the use of high performance fabrics and the proper arrangement of these. In detail, it is related to the convenient detail, the storage detail, the adjustable detail, and the body protection detail.

Coolant Material Effect on the Heat Transfer Rates of the Molten Metal Pool with Solidification

  • Cho, Jae-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Snag-Baik
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.812-817
    • /
    • 1998
  • Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal Pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results or the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measure from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of heat loss to the environment on the natural convection heat transfer in the molten pool.

  • PDF

수학교육에서 스토리텔링(storytelling)에 대한 문헌 분석 연구 (A literature research on storytelling in mathematics education)

  • 서보억
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제52권1호
    • /
    • pp.65-82
    • /
    • 2013
  • This study has to do with storytelling. In this study, analyzed the domestic and international academic literature and scientific papers. The purpose of this study is to provide the meaningful basic material on mathematics education for the development of storytelling lesson model and teaching material. First, we analyze the causes and background storytelling appeared. The psychologists found that the human cognition's structure consists of a narrative system. And, We realize that the problem 'How will attract the attention of the students in math class' will be solved by storytelling. Second, the means of storytelling about the educational value and benefits were discussed in Mathematics Education. The story has a powerful force in the delivery of mathematical content. And, the story has strong power, led to feelings of students receiving transfer mathematical content. Finally, examined the characteristics of the psychology of learning in mathematics education by storytelling. We were studied about internal and external story. And, we studies on storytelling as the mediator, story as the knowledge transfer, story as the problem-solving process, story as the script.