• Title/Summary/Keyword: liquid-fuel

Search Result 1,462, Processing Time 0.028 seconds

Measurement of Damping Ratio of Fuel Sloshing in a Baffled Liquid Propellant Tank of KSR-III Rocket (KSR-III 로켓의 액체 연료 탱크 내에서 발생하는 슬로싱 현상의 배플에 의한 감쇄율 측정)

  • Park, Soon-Hong;Yoo, Joon-Tae;Yi, Yeong-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.172-175
    • /
    • 2002
  • Sloshing of fuel in a liquid propellant tank is an important part of the dynamic and the stability analysis of the rocket. Baffles are installed in a propellant tank to reduce the instability due to sloshing. Multi degree of spring-mass-damper model was used to model sloshing of fuel in an axisymmetric tank. The natural frequencies and damping ratios are estimated. In order to verify the estimated natural frequencies and damping ratios, tests are performed for the real propellant tank of KSR-III with single ring baffle. Results of fuel sloshing analysis are compared with those of tests.

  • PDF

Measurment of Damping Ratio of Fuel Sloshing in Baffled Liquid Propellant Tank of KSR-III Rocket (KSR-III 로켓의 액체 연료 탱크 내에서 발생하는 슬로슁 현상의 배플에 의한 감쇄율 측정)

  • Park, Soon-Hong;Yoo, Joon-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.2-323
    • /
    • 2002
  • Sloshing of fuel in a liquid propellant tank is an important part of the dynamic and the stability analysis of the rocket. Baffles are installed in a propellant tank to reduce the instability due to sloshing. Multi degree of spring-mass-damper model was used to model sloshing of fuel in an axisymmetric tank. The natural frequencies and damping ratios are estimated. In order to verify the estimated natural frequencies and damping ratios, tests are performed for the real propellant tank of KSR-III with single ring baffle. Results of fuel sloshing analysis are compared with those of tests.

  • PDF

Fabrication and Chacterization of Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 제조 및 특성 연구)

  • Song, Rak-Hyun;Lee, Byun-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1700-1702
    • /
    • 1996
  • Solid oxide fuel cell(SOFC) is an electrochemical energy device which converts the free energy of fuel gas directly to electric energy. SOFC has several diratinct advantages over other types of fuel cells: no use of noble metals, no requirement of a reformer, no problem of liquid electrolyte management, and no problem of corrosion by liquid electrolyte. In this study, we have investigated the cell components and the single cell of the planar SOFC fabricated by composite plate process, in which green films of electrolyte, anode and cathode were co-fired. The planar SOFCs were tested and the cell performance characteristics wag evaluated by using electrochemical methods.

  • PDF

Comparison of Liquid- and Vapor-Phase Spray Characteristics of E85 Fuel using Schlieren Visualization Technique (쉴리렌 가시화 기법을 이용한 E85 연료의 액상 및 기상 분무 비교)

  • Park, Suhan;Chang, Mengzhao
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • The purpose of this study is to investigate the liquid- and vapor-phase spray characteristics, such as spray tip penetration and spray angle using gasoline direct injection (GDI) injector with multi-hole. The vapor-phase spray was captured by the Schlieren visualization system, which consists of high-speed camera, LED lamp, concave mirrors, and knife-edge. The liquid-phase spray was visualized by Mie-scattering techniques. Both spray images of vapor- and liquid-phase were visualized under 373 K of ambient temperature, 1 bar of ambient pressure, and 100/200 bar of injection pressure. The energizing duration was fixed at 1.5 ms. From the analysis of experimental results, it revealed that the increased injection pressure induced an early vaporization due to the improvement of droplet atomization. The spray tip penetration and spray angle in vapor-phase were higher than those in liquid-phase. The difference in the spray tip penetration between vapor- and liquid-spray gradually increased with the time elapsed after the injection. Even with the spray angle characteristics, it was found that the difference between the spray angle of liquid and vapor spray gradually grew after they entered steady-state conditions.

A Study for the Improvement of Start Ability and Exhaust Emissions in a Conventional Mixer Type LPG Engine on Cold Start (LPG 엔진의 냉 시동시 시동성 개선 및 배출들 저감을 위한 연구)

  • 김우석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.84-92
    • /
    • 2002
  • On the cold start of LPG engine, as the engine temperature has not reached its equilibrium temperature, liquid LPG could not be changed perfectly gaseous LPG, although it was passed to the vaporizer. Liquid and gas mixed fuel could influence starting ability and exhaust emission characteristics of LPG engine. In this study, the vaporization characteristic of liquid LPG was investigated with a conventional vaporizer and the vaporizer with heat source(glow plug) installed at preheated chamber inlet, by using the visualization methods and engine test. According to visualization result, even if the engine coolant temperature was $14^{\circ}C$, liquid fuel was supplied to primary chamber over 25 seconds without vaporizing from preheated chamber in such a conventional vaporizer. However, the vaporizer with heat source do not correspond with that, scarcely had been trim on glow plug when LPG began to vaporize. The effectiveness of heat source could be verified by application to the conventional LPG engine.

A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part II : Chemical Reaction of Monomethylhydrazine-Dinitrogen Tetroxide (우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part II : 모노메틸하이드라진-사산화이질소의 화학반응)

  • Jang, Yohan;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. Among several liquid propellants, the monomethylhydrazine-dinitrogen tetroxide is expecially preferred for a GEO satellite propellants due to their better storability in liquid phase during a long mission life under a freezing space environment. Recently, a development of the monomethylhydrazine-dinitrogen tetroxide bipropellant system becomes important as the national space program requires the heavier and the more efficient space system. Thus, the objective of the present study is to review a foreign research trend of a chemical reaction between the monomethyhydrazine fuel and the dinitrogen tetroxide oxidizer to understand a fundamental basis of their characteristics to prepare for domestic development in future.

Atomization Characteristics of the High Speed Rotating Injection System with Single Column Orifice (단열식 오리피스를 적용한 고속회전 분무노즐의 미립화 특성)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.97-102
    • /
    • 2009
  • The spray characteristics of the high speed rotating fuel injection system were studied. The five variants of rotating fuel nozzle were used by spray test. The diameter of single column injection orifices are varied from 1 mm, 2 mm, 3 mm, 4 mm and 5 mm. We constructed high speed rotating test rig and measured droplet size by PDPA (Phase Doppler Particle Analyzer) system. Also spray was visualized by using high speed camera. In the test results, we could understand that length of liquid column from the injection orifice is mainly controlled by the rotational speeds. SMD is decreased with increasing injection orifice diameter and rotational speeds. Furthermore, from the comparison to the theoritical calculation, we confirmed that SMD is influenced by the liquid film thickness which is formed inner surface of injection orifice.

  • PDF

Study on Spray Vaporization and Combustion in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.193-207
    • /
    • 2002
  • The present study is mainly motivated to investigate the vaporization, autoignition, and combustion of liquid fuel spray injected into high pressure environment. In order to represent these phenomena realistically, discrete droplet model (DDM) which simulates the spray using finite number of representative droplets was adopted for detailed consideration of the finite rate of uansport between liquid and gas phases. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. The high pressure vaporization model was applied using the thermodynamic and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. The characteristics of spray in high pressure environment were explained by comparison with normal pressure case.

  • PDF

Numerical Study of a Dump Type Ramjet Combustor (Dump형 램제트 연소기의 연소특성에 대한 수치적 연구)

  • Kim, Sung-Don;Jeung, In-Seuck;Choi, Jeong-Yol
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.218-222
    • /
    • 2006
  • Due to the high density and heating value, liquid fuel is attractive for ramjet propulsion system. Liquid fuel requires time to evaporation and mix with incoming air before ignition; insufficient evaporation and mixing result in low combustion efficiency and instability. So the numerical studies are conducted to investigate the spray and combustion characteristics of a liquid-fueled dump type Ramjet combustor. The governing equations are solved by means of a finite-volume using time derivative preconditioning method for chemical reacting flow. The liquid phase is treated by solving Lagrangian equations of motion and transport for the life histories of a statistically significant sample of individual droplets.

  • PDF

Distribution of the Concentration of Fuel Vapor in DI Gasoline Sprays Under Evaporation Condition (증발 조건에서 직분식 가솔린 분무의 증기 농도의 분포)

  • Hwang, S.C.;Choi, D.S.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • The concentration and spatial distribution of vapor phases in DI (Direct Injection) gasoline spray were measured quantitatively by exciplex fluorescence method. Fluorobenzene and DEMA (diethylmethylamine) in a solution of hexane were used as the exciplex-forming dopants. The fluorescence intensity of vapor phase were obtained by ICCD camera with the appropriate filter The relationship between fluorescence intensity and vapor concentration was induced fer the purpose of a quantitative analysis. The 2-D vapor/liquid images of fuel spray were captured under the evaporation condition, and the spatial distribution of vapor concentration was obtained. The spatial distribution of liquid phase had hollow-cone shape. And the vapor phase was widely distributed in the whole spray. The behavior of vapor phase was significantly affected by second flow such as entrainment, vortex, while that of liquid phase was scarcely affected.

  • PDF