• Title/Summary/Keyword: liquid-fuel

Search Result 1,456, Processing Time 0.025 seconds

Effects of Ultrasonic Standing Wave on the Ultrasonically-atomized Aerosol Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통과한 초음파 무화 에어로졸 화염에 정상초음파가 미치는 영향)

  • Ahn, Hyun Jong;Kang, Yun Hyeong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • In liquid-fuel spray combustion, an experimental study was conducted to observe the effect of ultrasonic excitation on the ultrasonically-atomized liquid fuel flame by controlling pressure field through an ultrasonic standing wave. Flame of the ultrasonically-atomized kerosene aerosol was visualized by using a high speed camera, DSLR, and Schlieren photography. The amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion, through which the ratio of carrier gas (air) to fuel mass was able to be obtained, too. As a result, it could be found that the combustion reaction-rate of the liquid-fuel aerosol was increased by applying an ultrasonic standing wave to the secondary flame zone of the flame.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • O, Seung-Muk;Kim, Chang-Eop;Lee, Jin-Uk;Kim, Chang-Gi;Gang, Geon-Yong;Bae, Chung-Sik
    • 연구논문집
    • /
    • s.33
    • /
    • pp.5-16
    • /
    • 2003
  • Fuel distribution, combustion, and flame propagation characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine. Optically accessible single cylinder engine and laser diagnostics system were built for quantifying fuel concentration by acetone PLIF(planar laser induced fluorescence) measurements. In case of Otto cycle engine with large bore size, the engine knock and thermal stress of exhaust manifold are so critical that lean burn operation is needed to reduce the problems. It is generally known that fuel stratification is one of the key technologies to extend the lean misfire limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs2.3. Thus, strong swirl flow could promote desirable axial fuel stratification and, in result, may make flame propagation stable in the early stage of combustion.

  • PDF

Emission Characteristics of GTL(Gas to Liquid) Fuel in Diesel Engine (디젤 엔진에서 GTL(Gas to Liquid) 연료의 배출물 특성에 관한 연구)

  • Lee, Yong-Gyu;Moon, Gun-Feel;Choi, Kyo-Nam;Jeong, Dong-Soo;Kim, Byoung-Jun;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.84-91
    • /
    • 2008
  • Due to increasing need for better emission characteristics and lower fuel consumption rate in automotive engines, alternative fuels are drawing more attentions recently. The GTL (gas to liquid) is the one of most favored candidates. In this study, emission characteristics are compared between diesel and GTL fuel in commercial 2.0 liter diesel engine and vehicle with CRDi(Common Rail Direct injection) system. The effects of injection timings on emission and fuel consumption rate are compared at various engine speeds and loads. Noticeable reduction in HC, CO and PM emissions are observed due to higher cetane number and low sulfur and aromatic contents in GTL. On the trade-off curve of NOx and PM(Particulate matter) GTL showed much more benefits than diesel, where about 30% of PM mass decreased at the same operating conditions. On CVS 75 mode test in vehicle, GTL showed an excellent emission enhancement, in which 50% of HC, 21% of PM, and 12% of NOx engine-out emissions are decreased compared to ULSD(Ultra low sulfur diesel) fuel.

Top-Feed Type Port Fuel Injector for Liquefied Petroleum Gas Liquid Phase Injection (Top-Feed Type 인젝터의 액상분사 LPG연료 분사장치 적용)

  • Yeom, Ki-Tae;Park, Jung-Seo;Bae, Choong-Sik;Park, Jeong-Nam;Kim, Sung-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2007
  • The injection and spray characteristics of top-feed type injector was investigated under liquid phase injection fueled with liquefied petroleum gas (LPG). Different pressures and temperatures of fuel injection system were tested to identify the injection characteristics after hot soaking. MIE-scattering technique was used for verification of successful liquid phase injection after hot soaking. In case of bottom-feed type injector, the injection was accomplished at every experimental condition. In case of top-feed type injector, when the pressure of LPG was over 1.2 MPa, the injection was not executed. However, under the pressure were 1.2 MPa, the liquid phase injection after hot soaking was accomplished. The engine with top-feed type fuel injection equipment was restarted successfully after hot soaking.

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

An Experimental Study on Catalytic Reformer with Direct Spraying of Fuel and Water for SOFC (고체산화물 연료전지용 연료.물 직접 분무식 촉매 개질기에 관한 실험적 연구)

  • Lee, Dae-Keun;Dong, Sang-Geun;Yang, Je-Bok;Kim, Hak-Joo;Jung, Heon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.260-265
    • /
    • 2006
  • An experimental study on the catalytic reformer adopted in the auxiliary power unit system of solid oxide fuel cell was conducted. A 3-fluid nozzle, by which liquid fuel such as diesel, water and air are sprayed and uniformed mixed, was designed and used in this study. An electrically heated monolith inserted in the reformer was used for the vaporization of fuel and water in the transient state of reformer. The reformer uses the partial oxidizing reaction at the catalyst and the supply of water prevents the flame combustion in the spraying zone and lessens the deactivation of catalyst. The result showed that the reforming of liquid fuel can be started by the electrically heated monolith and the 3-fluid nozzle can give the uniform mixing of fuel, water and air. It was also found that the reformer fueled by n-hexadecane can make the reformate, at best, containing $H_2$ at 15.5% and CO at 11.5% that are used as fuel in the solid oxide fuel cell.

  • PDF

Flow and Convective Heat Transfer Analysis Using RANS for A Wire-Wrapped Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1514-1524
    • /
    • 2006
  • This work presents the three-dimensional analysis of flow and heat transfer performed for a wire-wrapped fuel assembly of liquid metal reactor using Reynolds-averaged Wavier-Stokes analysis in conjunction with 557 model as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary conditions at inlet and outlet of the calculation domain. Three different assemblies, two 7-pin wire-spacer fuel assemblies and one bare rod bundle, apart from the pressure drop calculations for a 19-pin case, have been analyzed. Individual as well as a comparative analysis of the flow field and heat transfer have been discussed. Also, discussed is the position of hot spots observed in the wire-spacer fuel assembly. The flow field in the subchannels of a bare rod bundle and a wire-spacer fuel assembly is found to be different. A directional temperature gradient is found to exist in the subchannels of a wire-spacer fuel assembly Local Nusselt number in the subchannels of wire-spacer fuel assemblies is found to vary according to the wire-wrap position while in case of bare rod bundle, it's found to be constant.

Breakup Characteristics of Fuel Droplet Including Nanoparticles (나노 입자가 포함된 연료 액적의 분열 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Min Jung;Kim, Namil;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.

A Study on the Improvement of Lubrication Characteristics for Fuel Pump in LPG Engine (자동차용 LPG 연료펌프의 윤활성 개선에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. Self acting lubricated groove design or coating can be used in high-speed and high precision spindle system like a roller-vane type fuel pump, because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy and simplicity in manufacturing. Those design method can also affect the atomization of fuel from the injector and the formation of fuel film on the intake manifold. In this study, experiments are carried out to get performance characteristics of initial and steady state operation, The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF