• Title/Summary/Keyword: liquid storage

Search Result 856, Processing Time 0.029 seconds

Effect of Relative Humidity on the Changes of Lipids in Freeze-Dried Fish during Storage (동결건조 어육지질의 변화에 미치는 상대습도의 영향)

  • LEE Hyeung-Il;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.6
    • /
    • pp.519-528
    • /
    • 1985
  • Fillets of mackerel (Scomber japonicus) and flounder (Xystrias grigorjewi) which, are representatives in red fleshed fish and white fleshed fish, respectively, were freeze-dried and stored in tightly sealed containers which were controlled to different relative humidity at $25^{\circ}C$. The changes of lipids were examined periodically by measuring the peroxide value (POV), the thiobarbituric acid (TBA) and the acid value (AV). And the fatty acid composition of lipids was investigated by gas-liquid chromatography (GLC). The results obtained are summarized as foollows: From the changes of POV and TBA value during storage, the oxidation of lipids was distinct at the lower relative humidities, $0\%\;and\;23\%$, while inhibited at the higher relative humidities, $52\%\;and\;81\%$. The changes in acid value during storage were more prominent at the hifger relative himidites than at the lower relative humidities. The content of $C_{16:0},\;C_{18:0}\;and\;C_{22:6}$ acids in the fatty acid composition of total lipids was abundant in both fleshed fishes. The content of $C_{18:1}$ acid in the nonpolar lipid and that of $C_{16:0}$ acid in the polar lipid were higher than other fatty acids. In the fatty acid composition of total lipids during storage, polyenoic acids decreased with storage period at $0\%\;and\;23\%$ relative humidities, while the fatty acid composition didn't show a great change at $52\%\;and\;81\%$ relative humidities. In the non-polar lipid, polyenoic acids coherently decreased under all the conditions of relative humidities but the saturated acids and the monoenoic acids increased. In the polar lipid, polyenoic acids decreased at $0\%\;and\;23\%$ relative humidities, while the saturated acids and monoenoic acids decreased at $52\%\;and\;81\%$ relative humidities. On the other hand, the oxidation of lipids was more significant in mackerel than in the flounder, and the changes of fatty acid composition were shown a similar pattern.

  • PDF

Discrimination Analysis of Production Year of Rice and Brown Rice based on Phospholipids (인지질을 이용한 쌀과 현미의 생산연도 판별 분석)

  • Hong, Jee-Hwa;Ahn, Jongsung;Kim, Yong-Kyoung;Choi, Kyung-Hu;Lee, Min-Hui;Park, Young-Jun;Kim, Hyun-Tae;Lee, Jae-Hwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • The mixing of rice and brown rice produced in different years is banned in Korea by the grain management act. However, there has been no reported method for discriminating the production year of rice. The objective of this study was to develop a method for discriminating the production year of rice and brown rice based on their phospholipids content. One hundred rice samples and 130 brown rice samples produced between 2012 and 2015 were collected. Twelve phosphatidylcholine components were analyzed by liquid chromatography-tandem mass spectrometry. Phosphatidylcholine was used as an internal standard to calculate the peak intensity of the samples. A statistical analysis of the results showed that the centroid distance between the stale and new rice was 4.16 and the classification ratio was 97%. To verify the calculated discriminant, 61 and 40 rice samples were collected. The accuracy of discrimination was 82% by primary verification and 80% by secondary verification. The statistical analysis of brown rice showed that the centroid distance between the stale and new brown rice was 3.14 and the classification ratio was 96%. To verify the calculated discriminant, 10 samples of new rice and 30 samples of stale rice were collected and the accuracy of discrimination was 93%. The accuracy of discrimination for rice stored at room temperature was 57.9-92.1% and that for rice stored at a low temperature was 86.8-94.7%, depending on the storage period. For brown rice, the detection accuracy was 94.7-100% at room temperature and 92.1-100% at a low temperature, depending on the storage period. The accuracy of discrimination for rice was affected by the storage temperature and time, while that for brown rice was more than 92% regardless of the storage conditions. These results suggest that the developed discriminant analysis method could be utilized to determine the production year of rice and brown rice.

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF

Determination of the mole fractions of ethylene oxide and freons in medical liquefied gas mixture by GC/AED (GC/AED를 이용한 의료용 액화혼합가스 중 산화에틸렌 및 프레온 가스류의 몰분율 측정)

  • Kim, Hyunjoo;Kim, Dalho;Lim, Arang;Lee, Taeck-Hong;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.382-387
    • /
    • 2012
  • Ethylene oxide ($C_2H_4O$, EtO) is used as a raw material for the production of ethylene glycol and other industrially important material such as ethanolamines and also used as a disinfecting agent. It is applied for gas-phase sterilization of thermally sensitive medical equipment, and for processing of storage facilities as a mixture with fluorinated hydrocarbon. In this perspective, accurate determination of the mole fractions of components in the liquefied gas mixture is required for the quality control and safety of production and use. Each component of the liquefied gas mixture has different chemical and physical properties such as vapor pressure and boiling point. Therefore, we can suppose that analytical results can be different according to the introduction method for the gas phase of upper layer, or for the liquid phase of lower layer in gas cylinder. In this study, we designed a new on-line sample injection device for the liquefied gas mixture in liquid or gas state, and applied to the analysis of liquefied gas mixture of ethylene oxide and fluorinated hydrocarbons by GC/AED (gas chromatograph-atomic emission detector). We studied performance of AED, and effect of sample introduction and selected wavelength to the accuracy and repeatability of analytical results.

Validation of an HPLC Method for the Pharmacokinetic Study of Glipizide in Human (글리피짓 체내동태 연구를 위한 혈청 중 글리피짓의 HPLC 정량법 검증)

  • Cho, Hea-Young;Lee, Hwa-Jeong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.137-142
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of glipizide in human serum was validated and applied to the pharmacokinetic study of glipizide. Glipizide and internal standard, tolbutamide, were extracted from human serum by liquid-liquid extraction with benzene and analyzed on a Nova Pak $C_{18}\;60{\AA}$ column with the mobile phase of acetonitrile-potassium dihydrogen phosphate (10 mM, pH 3.5) (4:6, v/v). Detection wavelength of 275 nm and flow rate of 0.7 ml/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed glipizide concentration (500 ng/ ml) with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 10-1000 ng/ml with correlation coefficient greater than 0.999. The lower limit of quantitation using 0.5 ml of serum was 10.0 ng/ml, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 82.6 to 105.0% for glipizide with overall precision (% C.V.) being 1.13-13.20%. The percent recovery for human serum was in the range of 85.2 93.5%. Stability studies showed that glipizide was stable during storage, or during the assay procedure in human serum. The peak area and retention time of glipizide were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of glipizide in human serum samples for the pharmacokinetic studies at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Etodolac in Human (에토돌락 체내동태 연구를 위한 혈청 중 에토돌락의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Moon, Jai-Dong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.265-271
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of etodolac in human serum was developed, validated, and applied to the pharmacokinetic study of etodolac. Etodolac and internal standard, ibuprofen were extracted from human serum by liquid-liquid extraction with hexane/isopropanol (95:5, v/v) and analyzed on a Luna C18(2) column with the mobile phase of 1% aqueous acetic acid-acetonitrile (4:6, v/v). Detection wavelength of 227 nm and flow rate of 1.0 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed etodolac concentration $(1\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-40\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of serum was 0.05 ${\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.00 to 110.00% for etodolac with overall precision (% C.V.) being 1.08-10.11%. The percent recovery for human serum was in the range of 76.73-115.30%. Stability studies showed that etodolac was stable during storage, or during the assay procedure in human serum. The peak area and retention time of etodolac were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of etodolac in human serum samples for the pharmacokinetic studies of orally administered Lodin XL tablet (400 mg as etodolac) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Fenoprofen in Human (페노프로펜 체내동태 연구를 위한 혈청 중 페노프로펜의 HPLC 정량법 개발 및 검증)

  • Cho, Hye-Young;Kang, Hyun-Ah;Kim, Yoon-Gyoon;Sah, Hong-Kee;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • A selective and sensitive reversed-phase HPLC method for the determination of fenoprofen in human serum was developed, validated, and applied to the pharmacokinetic study of fenoprofen calcium. Fenoprofen and internal standard, ketoprofen, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Luna C18(2) column with the mobile phase of acetonitrile-3 mM potassium dihydrogen phosphate (32:68, v/v, adjusted to pH 6.6 with phosphoric acid). Detection wavelength of 272 nm and flow rate of 0.25 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed fenoprofen concentration $(2\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-100\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 1 mL of serum was $0.05\;{\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.27 to 109.20% for fenoprofen with overall precision (% C.V.) being 5.51-11.71 %. The relative mean recovery of fenoprofen for human serum was 81.7%. Stability (freeze-thaw, short and long-term) studies showed that fenoprofen was not stable during storage. But, extracted serum sample and stock solution were allowed to stand at ambient temperature for 12 hr prior to injection without affecting the quantification. The peak area and retention time of fenoprofen were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of fenoprofen in human serum samples for the pharmacokinetic studies of orally administered Fenopron tablet (600 mg as fenoprofen) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Pentoxifylline in Human Serum (체내동태 연구를 위한 혈청 중 펜톡시필린의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Yoo, Hee-Doo;Lee, Hwa-Jeong;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • A selective and sensitive reversed-phase HPLC method for the determination of pentoxifylline in human serum was developed, validated, and applied to the pharmacokinetic study of pentoxifylline. Pentoxifylline and internal standard, chloramphenicol, were extracted from the serum by liquid-liquid extraction with dichloromethane and analyzed on a Luna CI8(2) column with the mobile phase of acetonitrile-0.034 M phosphoric acid (25:75, v/v, adjusted to pH 4.0 with 10 M NaOH). Detection wavelength of 273 nm and flow rate of 0.8 mL/min were used. This method showed linear response over the concentration range of 10-500 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of the serum was 10 ng/mL, which was sensitive enough for pharmacokinetic studies of pentoxifylline. The overall accuracy of the quality control samples ranged from 89.3 to 92.7% for pentoxifylline with overall precision (% C.V.) being 4.1-9.2%. The relative mean recovery of pentoxifylline for human serum was 105.8%. Stability (stock solution, short and long-term) studies showed that pentoxifylline was not stable during storage. But three freeze-thaw cycles and extracted serum samples were stable. This method showed good ruggedness (within 15% C.V.) and was successfully applied for the analysis of pentoxifylline in human serum samples for the pharmacokinetic studies of orally administered $Trental^{\circledR}$ tablet (400 mg pentoxifylline), demonstrating the suitability of the method.

Fabrication and analysis of electrochemical performance for energy storage device composed of metal-organic framework(MOF)/porous activated carbon composite material (금속유기골격체(Metal-organic Framework) 소재가 첨가된 다공성 활성탄소 복합재료 전극 기반의 에너지 저장 매체 제조 및 전기화학적 특성 분석)

  • Lee, Kyu Seok;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2020
  • In this study, supercapacitor based on the all solid state electrolyte with PVA(polyvinyl alcohol), ionic liquid as a BMIMBF4(1-buthyl-3-methylimidazolium tetrafluoroborate) and activated carbon/Ni-MOF composite was fabricated and characterized its electrochemical properties with function of MOF. In order to analysis and comparison that electrochemical performances [including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test] of prepared supercapacitor based on activated carbon/Ni-MOF composite and all solid state electrolyte. As a result, specific capacitance of the supercapacitor without Ni-MOF was 380 F/g which value decreased to 340 F/g after adding Ni-MOF to activated carbon as a electrode material. This result exhibited that decreased electrochemical property of the supercapacitor effected on physical hinderance in the electrode. In further, it needs to optimization of the Ni-MOF amount (wt%) in the electrode composite to maximize its electrochemical performances.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Dipyridamole in Human (디피리다몰 체내동태 연구를 위한 혈청 중 디피리다몰의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Moon, Jae-Dong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of dipyridamole in human serum was developed, validated, and applied to the pharmacokinetic study of dipyridamole. Dipyridamole and internal standard, loxapine, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Nova Pak $C_{I8}$ column with the mobile phase of 40 mM ammonium acetate:methanol:acetonitrile (35:35:30)(v/v/v, pH 7.8). Detection wavelength of 280 nm and flow rate of 1.0 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed dipyridamole concentration (50 ng/mL) with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 2-2000 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of serum was 2 ng/mL, which was sensitive enough for pharmacokinetic studies of dipyridamole. The overall accuracy of the quality control samples ranged from 103.94 to 105.86% for dipyridamole with overall precision (% C.V.) being 4.60-11.49%. The relative mean recovery of dipyridamole for human serum was 97.64%. Stability studies showed that dipyridamole was stable during storage, or during the assay procedure in human serum. The peak area and retention time of dipyridamole were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of dipyridamole in human serum samples for the pharmacokinetic studies of orally administered Dimor tablet (75 mg as dipyridamole) at three different laboratories, demonstrating the suitability of the method.