• Title/Summary/Keyword: liquid hydrogen pump

Search Result 23, Processing Time 0.019 seconds

Experimental Study on Millimeter Scale Two Phase Catalytic Reactor (밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구)

  • Cho, Chung-Hun;Lee, Dae-Hoon;Kwon, Se-JIn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.

Application of Analytical Instrument Method for Determining Level of Malodorous Sulfur Compounds. (악취성분중 황화합물에 대한 기기분석법의 적용)

  • 유병태;최종욱;조기찬;이충언;김건흥
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.117-123
    • /
    • 1999
  • The analytical instrument method was applied to analyze malodorous sulfur compounds emitted from industrial fields. Six factories and two sites which release malodorous substances into ambient air were selected to determine the level of hydrogen sulfide($H_2S$), methylmercaptan(MeSH), dimethyl sulfide($Me_2S$), and dimethyl disulfide($Me_2S_2$) using automated thermal desorption system (STD400) and GC-FPD in summer and fall seasons of 1999. The Air sampler for ATD400 uses a small pump to draw sample and a mass flow controller to adjust sample amount without using a dilution apparatus. The trap temperature of ATD400 reached to $-80^{\circ}$ by supplying liquid nitrogen and $H_2S$ can be analyzed under this condition. The recovery rates of $H_2S$, MeSH, $Me_2S$, and $Me_2S_2$ of odorous sulfur compounds standard were shown 98.2%, 93.6%, 98.2%, 99.4% respectively. The concentrations of $Me_2S$ at outside boundary of G market, L factory, and J factory were 0.018ppm, 0.021ppm, 0.032ppm in summer, respectively. The concentration of $H_2S$ at Nanjido landfill was 1.167ppm in summer, but that of $H_2S$ was not detected in fall because of soil covering. The concentration of H2S and $Me_2S_2$ at inside of Chonggye stream were 0.564ppm and 1.045ppm in summer, while those of H2S and Me2S2 were 0.285ppm and 0.465ppm in fall, respectively.

  • PDF

Study on 222Rn reduction rate in boiling groundwater (가열에 의한 지하수 중 222Rn 제거율 고찰)

  • Kim, MoonSu;Kim, Hyun-Koo;Park, Sun-Wha;Kim, Hyoung-Seop;Ju, Byoung-Kyu;Kim, Dong-Su;Cho, Sung-Jin;Yang, Jae-Ha;Kwon, Oh-Sang;Kim, Tae-Seung
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.353-360
    • /
    • 2015
  • Boiling is an efficient removal method to reduce radon in groundwater when ventilating indoor air. 13 groundwater samples with various radon concentrations were used to evaluate the reduction rate of radon with heating temperature and time. The groundwater samples were obtained by Bladder pump and on-situ measurements such as dissolved oxygen (DO) and hydrogen concentration (pH) and so on were carried out by a flow cell system isolated from the ambient atmosphere environment. All samples for measuring radon in groundwater were analyzed by liquid scintillation counter (LSC). The experiment result showed that increasing groundwater temperature enhanced radon removal rate but the initial radon concentration with high level lowered the removal rate. This means that radon reduction in groundwater by heating needs more heating energy and longer heating time with radon concentrations. Radon removal rate in groundwater, therefore, mainly depends on the initial radon concentration, heating temperature, and heating time.