• 제목/요약/키워드: liquid flow

검색결과 2,932건 처리시간 0.029초

알루미늄 다채널 평판관 증발기 내 냉매분배 (Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger)

  • 김내현;박태균;한성필;이응렬
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.800-810
    • /
    • 2006
  • The R-134a flow distribution is experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous air-water results. The flow at the header inlet is stratified. For the downward flow configuration, the liquid distribution improves as the protrusion depth or the mass flux increases, or the quality decreases. For the upward configuration, the liquid distribution improves as the mass flux or quality decreases. The protrusion depth has minimal effect. For the downward configuration. the effect of quality on liquid distribution is significantly affected by the flow regime at the header inlet. For the stratified inlet flow, the liquid is forced to rear part of the header as the quality decreases. However, for the annular inlet flow, the liquid was forced to the frontal part of the header as the quality decreased. For the upward flow, the effect of the mass flux or quality on liquid distribution of the stratified inlet flow is opposite to that of the annular inlet flow. The high gas velocity of the annular flow may be responsible for the trend. Generally, the liquid distribution of the stratified inlet flow is better than that of the annular inlet flow. Possible explanation is provided from the flow visualization results.

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal;Subash L Sharma
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2881-2892
    • /
    • 2024
  • Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental study on heat transfer of a falling liquid film in air channel flow)

  • 오동은;강병하;김석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow)

  • 오동은;강병하;김석현;이대영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES (LES of breakup and atomization of a liquid jet into cross turbulent flow)

  • 양승준;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2009
  • 비정상 난류 유동장으로 분사되는 액체 제트의 액주 분열과 미립화 현상에 관한 LES를 수행하였다. 기체상태의 공기 유동 해석에 오일러리안 해법을 사용하고, 액적 추적을 위하여 라그랑지안 해법을 사용하여 기체-액체간 이상유동(two phase flow) 해석을 수행하였다. 액주의 1차 및 2차 분열이 관찰되었다. 일정한 속도로 유입되는 공기유동 중에 액체 분사 속도를 달리하여, 액체-기체 운동량 플럭스 비의 변화를 고려하여 액체 제트의 침투깊이를 조사하였으며 실험결과와 유사함을 알 수 있었다. 제트 후류에서 입자 평균직경에 대한 분석을 수행하였다.

  • PDF

난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES (LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow)

  • 양승준;구자예;성홍계
    • 한국추진공학회지
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 2010
  • 난류 유동장으로 분사되는 액체 제트의 액주 분열과 액적 미립화 현상에 관한 LES를 수행하였다. 기체상태의 공기 유동해석에 Eulerian 해법을 사용하고, 액적 추적을 위하여 Lagrangian 해법을 사용하여 기체-액체간 이상유동(two phase flow) 해석을 수행하였다. 액적 분열 과정 모사에 blob-KH 분열 모델을 적용하여 액주와 액적의 분열이 관찰되었다. 일정한 공기 유동 조건에서 액체 분사 속도 변화를 통한 액체-기체 운동량 플럭스 비의 변화에 따른 액체 제트의 침투깊이를 조사하였으며 실험결과와 유사함을 알 수 있었다. 분사 제트의 분열에 따라 유동장에 존재하는 액적의 분포를 Sauter 평균 입경(SMD)의 분석을 통해 수행하였다.

아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성 (Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air)

  • 이인철;변용우;구자예
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

OMACON형 LM-MHD 시스템에서의 에너지전환특성 시뮬레이션 (Simulation of Energy Conversion Characteristics of OMACON LM-MHD Systems)

  • 김창녕
    • 한국시뮬레이션학회논문지
    • /
    • 제6권2호
    • /
    • pp.1-14
    • /
    • 1997
  • The characteristics of the flow and energy conversion in OMACON liquid-metal MHD system are investigated. Numerical simulation of two-phase flow in the OMACON system without magnetic field was carried out by the Phoenics code and the energy conversion characteristics are studied in association with the fact that the mechanical energy loss at the nozzle of the OMACON system are to be converted into electrical energy. In this system, working fluid (gas) is injected through the mixer located at the bottom of the riser, and is mixed with hot liquid metal. Therefore in the riser two-phase flow is developed under the influence of the gravity. In this study, the interaction between the gas and liquid is considered by the use of IPSA(InterPhase Slip Algorithm) where standard drag coefficient has been used. It has been assumed that in the flow regime the liquid is continuous and the gas is dispersed. For the liquid and gas, the continuity equations, momentum equations and energy equations are solved respectively in association with void fraction in the flow field. In order to calculate the energy conversion efficiency, firstly the ratio of the mechanical energy loss of liquid metal flow at the nozzle to the input thermal energy is considered. Secondly flow pattern of liquid metal in the generator has been analyzed, and the characteristics of the conversion of the mechanical energy into the electrical energy has been investigated. For an representative case where Hartmann number is 540 and magnetic field is 0.35 T, the present analysis shows that the energy conversion efficiency is 0.653. This result is considered to be reasonable in comparison with published experimental results.

  • PDF

슬러그류 액상속도 측정용 전류형식 전자기유량계 개발 (Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow)

  • 강덕홍;안예찬;김종록;오병도;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II) (A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF