• Title/Summary/Keyword: liquid flow

Search Result 2,932, Processing Time 0.031 seconds

Development Test of Alcohol Burner for Turbopump Real-propellant Test Facility (터보펌프 실매질 시험설비를 위한 알코올버너 개발시험)

  • Kim, Jin-Sun;Han, Yeoung-Min;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.79-86
    • /
    • 2014
  • A turbopump real-propellant test facility(TPTF) is to verify the performance of a turbopump unit(TPU) based on liquid oxygen and kerosene. One of the most important sub-facilities is a hot-gas generation system which makes the driving force of the TPU with an alcohol burner. The alcohol burner generates the required flow rates and temperature at the facility using high pressure air and ethanol. In the study, the verification tests of the alcohol burner which was manufactured entirely with domestic technology were performed and fabrication technique and operation skill for the burner could be obtained ahead of the construction of the facility. Two burners will be operated simultaneously for the real-propellant test of 75tf class turbopump and satisfy the power requirement from the turbine of the TPU.

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

A Study on the Chilling Start-up Characteristics and Performance of a Gas Loaded Heat Pipe (가스내장 히트파이프의 냉시동특성과 성능에 관한 연구)

  • Hong, Sung-Eun;Kang, Hwan-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.915-922
    • /
    • 2006
  • Considering heat pipe design principles in fabrication and operational performances, water is one of the most recommended working fluids to make mid to low tempera lure heat pipes. But the conventional water heat pipes might encounter the failure in a cold start-up operation when socked at a chilling temperature lower than the freezing point. If they are subjected to a heat supply for start-up at a temperature around $-20^{\circ}C$, the rate of the vapor flow and the corresponding heat transfer from the evaporator to the condenser is so small that the vapor keeps to stick on the surface of the chilling condenser wall, forming an ice layer, resulting in a liquid deficiency in the evaporator. This kind of problems was resolved by Kang et al. in 2004 by adopting a gas loading heat pipe technology to the conventional water heat pipes. This study was conducted to examine a chilling start-up procedure of gas loading heat pipes by investigating the behaviors of heat pipe wall temperatures. And the thermal resistance of the gas loaded heat pipe that depends on the operating temperatures and heat loads was measured and examined. Two water heat pipes were designed and fabricated for the comparison of performances, one conventional and the other loaded with $N_2$ gas. They were put on start-up test at a heat supply of 30 W after having been socked at an initial temperature around $-20^{\circ}C$. It was observed that the gas loaded one had succeeded in chilling start-up operation.

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

HPLC Determination of Tolperisone in Human Plasma

  • Bae Jung-Woo;Park Young-Seo;Sohn Uy-Dong;Myung Chang-Sun;Ryu Byung-Kwon;Jang Choon-Gon;Lee Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.339-342
    • /
    • 2006
  • A simple high performance liquid chromatographic (HPLC) method was developed for the determination of tolperisone in human plasma. Tolperisone and internal standard (chlorphenesin) were isolated from 1 mL of plasma using 8 mL of dichlormethane. The organic phase was collected and evaporated under nitrogen gas. The residue was then reconstituted with 300 mL aliquot of mobile phase and a 100 mL aliquot was injected onto the $C_{18}$ reverse-phased column. The mobile phase, $45\%$ methanol containing $1\%$ glacial acetic acid and $0.05\%$ 1-hexanesulfonic acid was run at a flow rate of 1 mL/min. The column effluent was monitored using UV detector at 260 nm. The retention times for tolperisone and the internal standard were approximately 7.1 and 8.4 min, respectively. The standard curve was linear with minimal intra-day and inter-day variability. The quantification limit of tolperisone in human plasma was 10 ng/ mL. The proposed method has been applied to the determination of pharmacokinetic profile of tolperisone in Koreans. The T max of tolperisone in Koreans $(0.94{\pm}0.42\;h)$ was not significantly differ from that reported in Europeans (0.5-1 h), but the mean half-life in Koreans $(1.14{\pm}0.27\;h)$ was shorter than that in Europeans $(2.56{\pm}0.2\;h)$. The proposed HPLC method is simple, accurate, reproducible and suitable for pharmacokinetic study of tolperisone.

Method development and validation of spectrophotometric and RP-HPLC methods for simultaneous estimation of spironolactone and furosemide in bulk and combined tablet dosage forms

  • Chavan, Rohankumar R.;Bhinge, Somnath D.;Bhutkar, Mangesh A.;Randive, Dheeraj S.;Salunkhe, Vijay R.
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.212-224
    • /
    • 2021
  • The intent of the present work was to develop a simple, sensitive, accurate, precise, rapid and economical UV- spectrophotometric and reverse phase high pressure liquid chromatographic method for the simultaneous estimation of Spironolactone and Furosemide in bulk and combined tablet dosage forms. UV-Spectrophotometry was carried out by simultaneous equation method using 0.02 M potassium dihydrogen phosphate buffer pH 3.5: Acetonitrile (50:50) v/v as a solvent. The linearity range was 2-14 ㎍ mL-1 for Spironolactone and Furosemide with a correlation coefficient > 0.99. The chromatographic separation was achieved on 250 mm × 4.6 mm, hypersil BDS C18 column with particle size 5 ㎛, by using an isocratic mixture of 0.02 M potassium dihydrogen phosphate buffer pH 3.5: Acetonitrile: tert butyl methyl ether (49:50:1) v/v/v as a solvent at a flow rate of 1 mL min-1 and UV detection was carried out at 254 nm. The retention time were observed to be 3.666 and 6.661 minutes for Furosemide and Spironolactone respectively. The two developed methods were validated according to the ICH guidelines for accuracy, precision, linearity, LOD, LOQ and were found to be within the limits. It can be concluded that these two methods could be successfully used for the simultaneous estimation of Spironolactone and Furosemide in bulk and combined tablet dosage forms.

Numerical Study on Fine Migration in Geo-materials (지반내 세립토 유동에 대한 수치해석적 연구)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.33-41
    • /
    • 2018
  • Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.

Development of NO2/NOx Ratio Estimation Model for Urea-SCR System Application on Non-road Diesel Engine (비도로용 디젤엔진의 Urea SCR system 적용을 위한 NO2/NOx ratio 예측모델 개발에 관한 연구)

  • Kang, Seokho;Kim, Hoonmyung;Kang, Jeongho;Park, Eunyong;Kwon, Ohyun;Kim, Daeyeol
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.178-187
    • /
    • 2020
  • The current emission regulations, US Tier-4 and EU Stage-V, are only able to satisfy the regulations when all currently mass-produced emission reduction technologies such as EGR, DOC, DPF, and SCR are applied. Therefore, in this study, for the application of the Urea-SCR system to non-road diesel engines, the database was established by measuring the NO, NO2 concentration and calculating the NO2/NOx ratio based on the catalyst temperature and exhaust mass flow rate. Also, based on the measured NO2/NOx ratio data, a mathematical model was proposed to predict the NO2/NOx ratio at SCR catalyst, and the suitability of the model was verified through steady-state and transient mode. As a result of comparing the NO2/NOx ratio measured at the DOC outlet under the steady-state condition to two model values separately, the R2 was 0.9811 for the 3D map model and 0.9303 for the mathematical model. And in the case of the NO2/NOx ratio measured at the DPF outlet, the R2 was 0.9797 for the 3D map model and 0.935 for the mathematical model. It was confirmed that the R2 with the model value of the 3D Map of the mathematical model in the transient mode is 0.957, which shows high reliability.

Determination of cyromazine in commercial insecticides using HPLC-DAD

  • Kim, Young-Wook;Han, Bok Hee;Kang, Young Eun;Rhee, Chae Hong;Seo, Sang-Ji;Kim, Soohee;Jeong, Wooseog;Her, Moon
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.4
    • /
    • pp.261-265
    • /
    • 2020
  • Each commercial cyromazine insecticide has different HPLC conditions. The aim of this study was to establish a standardized chromatographic method for the determination of cyromazine in commercial insecticides. The separation was achieved on two C18 columns - Waters® Bondapak C (4×300 nm i.d., 10 ㎛) and X bridge (4.6×250 nm i.d., 5 ㎛) using a mobile phase composed of water/methanol/ethanolamine (76:24:0.1, v/v), with UV detection at wavelengths 230 nm and 254 nm. A total of six commercial cyromazine insecticides were analyzed. In this study, the optimal high-performance liquid chromatography conditions for the analysis of cyromazine were as follows: a mobile phase of water/methanol/ethanolamine (76:24:0.1, v/v) at a flow rate of 1.0 mL/min and a detection wavelength of 230 nm using a X bridge C18 column (4.6×250 nm i.d., 5 ㎛) at a column temperature of 25℃. The calibration curve was linear in the concentration range of 5~50 ㎍/mL, with a correlation coefficient of 0.99995. The cyromazine detection limit was 0.2 ㎍/mL, and the limit of quantification was 0.59 ㎍/mL. The percentage recovery ranged from 99.8% to 101.0% for cyromazine, and the relative standard deviation was not over 2.0%. The cyromazine concentration ranged from 92.7% to 109.4% and was within the acceptable range (90~120%) for the percent of the labeled amount. This method was found to be suitable for determining cyromazine in commercial insecticides.