• Title/Summary/Keyword: liquid flow

Search Result 2,932, Processing Time 0.027 seconds

Effect of Convection on the Solidification Microstructure of Hyper-Peritectic Systems (과포정계 합금의 응고조직에 미치는 대류의 영향)

  • Park, Byeong-Gyu;Kim, Mu-Geun;Park, Jang-Sik;Kim, Geun-O;Choe, Jae-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.958-966
    • /
    • 2001
  • This study has examined the microstructural development in the Bridgman type directional solidification of hyper-peritectic Sn-Cd alloys, and the temperature and flow field have been numerically simulated to see if there is any change induced by convection. The directional solidification experiments carried out in quartz tubes with inside diameters of 0.4∼6mm showed that the resulting microstructures are clearly dependent on the size of tube diameters. The bigger ampoules where the effect of convection is highly expected produced saw-like structures resulting from the primary $\alpha$ and peritectic $\beta$ phase growing together at a planar solid-liquid front, with the former being surrounded by the latter. In the smaller ampoules, where the effect of convection is expected low however, the saw structure disappears, and as is understood from the theoretical prediction based on diffusion-controlled solidification the initial growth of the primary $\alpha$ phase is replaced by the nucleation of the peritectic $\beta$ phase whose growth continues to the end of the solidification.

Experimental Evaluation on the Thermal Stress Due to Ice Plugging of Tubes in Nuclear Power Plant (배관의 Ice Plugging에 의하여 유발되는 열응력의 실험적 규명)

  • Park, Young-Don;Lee, Min-Woo;Ku, Tae-Wan;Kim, Kui-Soon;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1094-1103
    • /
    • 1999
  • Ice-plugging of tube in nuclear power plant has been widely used for the purpose of preventing flow of the tube temporarily like a valve. Most common plugging method employs Liquid Nitrogen Gas of $-196^{\circ}C$. According to the change of tube materials and its dimension, the thermal stress caused from the application of the frozen gas can be varied. In this research, a series of experiments have been carried out to inspect the effect of tube geometry on thermal stresses induced due to ice-plugging. Two typical dimension of stainless and mild steels of 3 and 6 inch diameters were used for the experiments. Each critical spots were checked using strain rosette gages. Another inspection was made on the pressure and temperature of the fluid. It is shown that significant thermal stress level which can cause plastic deformation of failure has not been noticed in this series of experiments.

The Effect of Fluid Flow on the Primary Particle of Al-7wt%Si Alloy in Electromagnetic Stirring (전자교반시 Al-7wt%Si합금의 초정입자에 미치는 유동의 영향)

  • Lim, Sung-Chul;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.565-575
    • /
    • 1996
  • In this study, to gain the semi-solid alloy we employed the electromagnetic rotation by a induction motor of 3-phases and 2-poles for Al-7wt%Si alloy and observed the size of primary solid particle, distribution state of primary solid particle, the degree of sphericity, and fraction of primary solid for the evaluation of its results. The size of primary solid particle increases from $98{\mu}m$ to $118{\mu}m$ as solid fraction increases from 0.2 to 0.5. The degree of sphericity increased as the solid fraction increased. Solid particles obtained from the microstructures of isothermally held sample were coarsened and the degree of sphericity was enhanced as isothermal holding time increased. However, when the sample was stirred for more than 40min, solid particles merged together and liquid phase was entrapped within the cluster of solid particles. The size of primary solid particle was not changed significantly with the variation of input voltages by 160V over which solid particles began to merge together to be a large cluster of about $170{\mu}m$ at 180V. The standard deviation and the degree of sphericity were not changed significantly with the variation of input voltage.

  • PDF

Spray Characteristics in the cross region of twin spray between impinging F-O-O-F type injectors (충돌형 F-O-O-F 인젝터의 이중분무 중첩영역에서의 분무특성에 관한 연구)

  • Kwon, K.C.;Lee, E.S.;Kang, S.J.;Rho, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.758-763
    • /
    • 2001
  • This paper presents twin spray characteristics of two impinging F-O-O-F type injectors in which fuel and oxidizer impinge on each other to atomize under the various conditions. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The droplet size and velocity were investigated at mixture ratios of 1.5, 2.0, 2.47 and 3.0 for four injectors in which two single F-O-O-F injectors were arranged at intervals of 20.8, 31.2, 41.6 and 62.4mm respectively. In general, the arithmetic mean diameter, SMD and standard deviation of droplet size in the interaction area (X=0 and Y=0mm) were smaller. The axial velocity in the interaction area was slightly higher. Considering the behavior of impinged droplets using the We number calculated by using the axial velocity instead of the relative velocity in line C in Fig. 1(b) for four injectors, it is consumed that the We number over 500 had the possibility to disintegrate, and the We number below 500 had it to cohere after impingement of twin spray. The results of this study can be used for the design of a nozzle for liquid propellant rockets.

  • PDF

Atomization Characteristics of 2-Phase Atomizer with the change of Mixing Chamber Structure (혼합실 구조 변경에 의한 2상 노즐의 미립화 특성)

  • Ha, M.H.;Kim, K.C.;NamKung, J.H.;Lee, S.G.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.699-704
    • /
    • 2001
  • The purpose of this study is to present the atomization characteristics of 2-phase internal mixing nozzle. The obtained results are considered as the essential information of understanding the spray characteristics from the nozzle exit of an aerated nozzle. In this study, SMD and AMD are mainly measured at the distance of Z=10, 20, 50, 80, 120 and 170mm from the nozzle tip. The liquid flow rate was kept at 1.8g/s and the air feeding pressure was changed from 10kpa to 100kpa increasingly. The analysis of the acquired data was performed by 2-D PDPA system and in order to get the realibility, the number of data used in calculating the SMD & AMD were 10,000 samples.

  • PDF

Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF (액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성)

  • Jung, Hung Jun;Lee, In Hwan;Kim, Ho-Chan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Development of Hexafluoropropylene Hydrogenation with Pd/C Particles Prepared with 1-Hexyl-3-methylimidazolium Tetrafluoroborate (1-Hexyl-3-methylimidazolium Tetrafluoroborate으로 제조된 팔라듐 탄소촉매를 이용한 Hexafluoropropylene 수소화 반응)

  • Jeong, Ji Baek;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.412-415
    • /
    • 2013
  • Palladium on carbon powder was prepared using 1-hexyl-3-methylimidazolium tetrafluoroborate, one of room temperature ionic liquids. The synthesized particles were tested as a hexafluoropropylene hydrogenation catalyst. Moreover, the hydrogenation was performed under various reaction conditions to develop an optimum reaction process. The catalyst prepared by more than 3 wt% of palladium and the unity mole ratio of ionic liquid to palladium precursor showed higher catalytic activity. For reaction conditions, the complete hexafluoropropylene (HFP) conversion was achieved at these conditions; the volume flow ratio of hydrogen to HFP was higher than 1.25 and $GHSV_{HFP}$ was lower than 50000 mL/g-h.

An Experimental Study of a Diffuser Test Rig for Simulating High-Altitude Environment by using Hot (고온 연소가스를 이용한 고공 환경 모사용 디퓨저 실험장치 연구)

  • Yang, Jae-Jun;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Yong-Wook;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Performance tests of supersonic exhaust diffuser were conducted by using hot combustion gas for simulating high-altitude environment. The test rig consists of a combustion chamber, a vacuum chamber, water cooling ring and diffuser. Before combustion experiments, the preliminary leak tests were carried out on the liquid rocket engine and diffuser by using high pressure nitrogen(30barg) and a vacuum pump. The leak test results showed that there was no leaks at high pressure and vacuum pressure conditions.

  • PDF

Low Pressure Firing Tests of 75-tonf-Class Channel Cooling Thrust Chamber (75톤급 채널냉각 연소기 저압연소시험)

  • Lim, Byoung-Jik;Han, Yeoung-Min;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2011
  • Firing tests have been carried out for a technology demonstration model of 75-tonf-class combustor which is to be used on the liquid rocket engine of a Korean space launch vehicle. Firing tests were done at 50% of the nominal flow rate because of incapability of the test facility and limit of the test bed strength. Through the low pressure firing tests of 75-tonf-class channel cooling thrust chamber, operability and stability at the ignition and combustion phases were confirmed. Additionally it was foreseen that the 75-tonf-class thrust chamber would satisfy the performance requirements.

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.