• Title/Summary/Keyword: liquid flow

Search Result 2,924, Processing Time 0.027 seconds

Dynamic Analysis of Bubble-Driven Liquid Flows in a Rectangular Tank (사각탱크 내부의 기포구동유동에 대한 동특성 연구)

  • Kim, Sang-Moon;Yi, Seung-Jae;Kim, Hyun-Dong;Kim, Jong-Wook;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.31-38
    • /
    • 2010
  • An experimental study to evaluate dynamic structures of flow and turbulence characteristics in bubble-driven liquid flow in a rectangular tank with a varying flow rate of compressed air is conducted. Liquid flow fields are measured by time-resolved particle image velocimetry (PIV) with fluorescent tracer particles to eliminate diffused reflections, and by an image intensifier to acquire enhanced clean particle images. Instantaneous vector fields are investigated by using the two frame cross-correlation function and bad vectors are eliminated by magnitude difference technique. By proper orthogonal decomposition (POD) analysis, the energy distributions of spatial and temporal modes are acquired. When Reynolds number increases, bubble-induced turbulent motion becomes dominant rather than the recirculating flow near the side wall. The total kinetic energy transferred to the liquid from the rising bubbles shows a nonlinear relation regarding the energy input because of the interaction between bubbles and free surface.

The Effects of Tumble and Swirl Flow on the Behavior of Liquid/Vapor Phases in a DI Gasoline Engine (직분식 엔진에서 실린더 내 연료의 액.기상 거동에 미치는 텀블과 스월의 영향)

  • 강정중;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2002
  • This present study experimentally investigates the behavior of liquid and vapor phase of fuel mixtures with changing the in-cylinder air motion in an optically accessible engine. The conventional MPI/DOHC engine was modified to gasoline direct injection engine with swirl motion. The images of liquid and vapor phases were captured in the motoring operation condition using exciplex fluorescence method. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution inside of cylinder respectively, In early injection timings $(BTDC\;270^{\circ},\;180^{\circ})$, tumble flow transported most of vapor phase to the lower region and the both sides of cylinder, so vapor phase didn't become uniform distribution up to the half of the compression stroke. In the case of swirl flow, the fuel mixture was confined near the swirl origin in upper region of cylinder. In late injection timings $(BTDC\;90^{\circ})$, tumble flow transported vapor phase to the intake valve and swirl flow to the exhaust valve.

Flow Measurement of Liquid Oxygen using the Multi-hole Orifice (다공 오리피스를 이용한 액체산소 유량측정)

  • Lim, Hayoung;Lee, Jisung;Kim, Junghan;Noh, Yongoh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1031-1035
    • /
    • 2017
  • To measure the flow rate of the liquid oxygen, two types of multi-hole orifice meter were prepared. The $C_d$ of the orifice meter was determined by the flow test using water. After performing the liquid oxygen flow test for orifice meter and Coriolis meter, the mass flow rate was calculated using the $C_d$. The error of the mass flow rate compare to Coriolis meter, A-type(1/2") was below than 0.4%, B-type(3/4") was below than 0.8%.

  • PDF

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

STUDY ON BEHAVIOR OF LIQUID NITROGEN IN POROUS MEDIA (다공성 매질에서 액화질소의 거동에 대한 연구)

  • Choi, S.W.;Lee, W.I.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • The process of flow through porous media is of interest a wide range of engineering fields and areas, and the importance of fluid flow with a change in phase arises from the fact that many industrial processes rely on these phenomena for materials process, energy transfer. Especially, the flow phenomena of cryogenic liquid subjected to evaporation is of interest to investigate how the cryogenic liquid behaves in the porous structure. In this study, thermo physical properties, morphological properties of the glass wool with different bulk densities in terms of its temperature-dependence and permeability behaviors under different applying pressure are discussed. Using the experimentally determined properties, characteristics of two main experimental results are investigated. In addition, simulation results are used to realize the cryogenic liquid's flow in porous media, and are compared with experimental results. By using the experimentally determined properties, more reasonable results can be suggested in dealing with porous media flow.

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

A Study of Rivulet Flow on Inclined Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • Kim, Jin-Ho;Kim, Ho-Young;Lee, Jae-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.576-581
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively nonwetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curved motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet's curved motion A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate (수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구)

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF