• 제목/요약/키워드: liquid conservation

검색결과 150건 처리시간 0.024초

Cryopreservation of Zygotic Embryos of Herbaceous Peony (Paeonia lactiflora Pall.) by Encapsulation-Dehydration

  • Kim Hyun-Mi;Shin Jong-Hee;Sohn Jea-Keun
    • 한국작물학회지
    • /
    • 제49권4호
    • /
    • pp.354-357
    • /
    • 2004
  • A simplified technique which cryoprotects zygotic embryos by encapsulation-dehydration was developed for the germplasm conservation of herbaceous peony (Paeonia lactiflora Pall.). The highest survival rate $(85\%)$ was obtained from embryos treated by encapsulation-dehydration. The zygotic embryos were precultured on MS medium containing 0.3mg/L $GA_3$ for 1 day. The precultured embryos were encapsulated in $3\%$ (w/v) alginate beads and immersed for 1 h in MS medium containing 2 M glycerol and 0.5 M sucrose. The encapsulated embryos were dehydrated for 5h by air drying prior to direct immersion in liquid nitrogen. This encapsulation-dehydration method appears to be a promising technique for germplasm cryopreservation of a herbaceous peony.

벽면분무충돌모델의 개발과 평가 (Development and Assessment of Wall Spray Impaction Model)

  • 박권하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.137-142
    • /
    • 1996
  • A new wall impaction model for spray and its assessment are described in this paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach. The droplet parcel contains many thousands of drops assumed to have the same size, temperature and velocity components. The droplet parcel equations of trajectory, momentum, mass and energy are written in Lagrangian form. The new drop-wall interaction model is proposed, which is based on experimental investigations on individual drops, and it is applied for the general non-orthogonal gird. The model is then assessed through comparison with experiments over a wide range of test conditions of sprays. The results are in good agreement with experimental data.

  • PDF

접촉각에 따른 마이크로채널 내에서의 액적 거동에 대한 수치적 연구 (Numerical Study of Droplet Motion in a Microchannel with defferent contact angles)

  • 최지영;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.656-657
    • /
    • 2008
  • The droplet dynamics in a hydrophilic/hydrophobic microchannel, which is applicable to a typical proton exchange membrane fuel cell (PEMFC), is studied numerically by solving the equations governing conservation of mass and momentum. The liquid-gas interface or droplet shape is determined by a level set method which is modified to treat contact angles. The matching conditions at the interface are accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The effects of contact angle, inlet flow velocity, droplet size and side wall on the droplet motion are investigated parametrically. Based on the numerical results, the droplet dynamics including the sliding and detachment of droplets is found to depend significantly on the contact angle. Also, a droplet removal process is demonstrated on the combination of hydrophilic and hydrophobic surfaces.

  • PDF

분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰 (Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향 (The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber)

  • 임덕경;박권하
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

나노인공위성 추진용 콜로이드 추력기 해석 (Analysis of Colloid Thrusters for Nano-satellite Propulsion)

  • 박건중;김호영;송성진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

제어 알고리즘 개발을 위한 GHP 냉방모드 동특성 모델링 (Dynamics modeling of a GHP in cooling mode for development of control algorithm)

  • 신영기;김영일
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.243-249
    • /
    • 2005
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump(GHP) for design of control algorithm. The dynamic modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fan, coolant three-way valves and liquid injection valve were PI or P controlled. The simulation results showed physical behavior that is realistic enough to apply for control algorithm design.

확장 충돌 모델이 분무계산에 미치는 영향 (The Effect of Extended Collision Model on a Spray)

  • 한진희;조상무;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.181-191
    • /
    • 2002
  • Spray calculation has been studied to understand the behavior of the spray in a combustion chamber But the spray dispersion has not been predicted properly in a high velocity injection spray or a wall impaction spray. In this study the extended grazing collision model is applied to improve the problem. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. The droplet distributions, penetration, width and gas flows are compared for the cases with or without extended model. The extended collision model makes the results better.

액적 충돌에 동반된 열전달에 관한 수치적 연구 (Numerical Study of Heat Transfer Associated with Droplet Impact)

  • 김성일;손기현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1897-1902
    • /
    • 2004
  • Numerical analysis of the heat transfer associated with droplet impact on a hot solid surface is performed by solving the mass, momentum and energy equations for the liquid-gas region. The deformed droplet shape is tracked by a level set method which is modified to achieve volume conservation during the whole calculation procedure and to include the effect of contact angle at the wall. The numerical method is validated through test calculations for the cases reported in the literature. Based on the numerical results, the effects of advancing/receding contact angle, impact velocity and droplet size on the heat transfer during droplet impact are quantified.

  • PDF

고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구 (Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel)

  • 최지영;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF