• Title/Summary/Keyword: liquid bridge model

Search Result 12, Processing Time 0.026 seconds

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Application of DEM with Coarse Graining Method to Fluidal Material Behavior Analysis (유동성 재료의 동적 거동 해석을 위한 입자확대법 기반 DEM의 적용)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.23-30
    • /
    • 2017
  • PURPOSES : In this paper, the applicability of DEM to a coarse graining method was evaluated by simulating a series of minicone tests for cement paste. METHODS : First, the fundamental physical quantities that are used in a static liquid bridge model were presented with three basic quantities based on the similarity principle and coarse graining method. Then, the scale factors and surface tensions for six different sizes of particles were determined using the relationship between the physical quantities and the basic quantities. Finally, the determined surface tensions and radii were utilized to simulate the fluidal behavior of cement paste under a minicone test condition, and the final shape of the cement paste with reference DEM particle radii was compared with the final shape of the others. RESULTS : The simulations with adjusted surface tensions for five different radii of particles and surface tension showed acceptable agreement with the simulation with regard to the reference size of the particle, although disagreement increases as the sizes of the particle radii increase. It seems reasonable to increase the particle radii by at least 0.196 cm considering the computational time reduction of 162 min. CONCLUSIONS : The coarse graining method based on the similarity principle is applicable for simulating the behavior of fluidal materials when the behavior of the materials can be described by a static liquid bridge model. However, the maximum particle radius should be suggested by considering not only the scale factor but also the relationship of the particle size and number with the radius of the curve of the boundary geometry.

The Dielectric loss Properties of Mini-model Superconducting Cable (Mini-model 초전도 케이블의 유전손실 특성)

  • 김영석;곽동순;한철수;김해종;김동욱;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.946-951
    • /
    • 2003
  • A high-Tc superconducting cable(HTS cable) is expected as an underground power line supplying the electrical power the densely populated city in future. The electrical insulation is very important for develop HTS cable system because it is operated a high voltage and in cryogenic temperature. We manufactured a mini-model cable and measured a tan$\delta$ of cable using schering bridge. The tan$\delta$ of PPLP was lower than that of Tyvek and Kraft at a given temperature, the tan$\delta$ of PPLP was 1.16${\times}$10-3. According to the increase of electric stress the tan$\delta$ increased because partial discharge occurred inside butt gap of mini-model cable. However, the tan$\delta$ decreased by increase of liquid nitrogen pressure. This reason is thought by decrease of part discharge between butt gap by increase of liquid nitrogen pressure.

Skin Effect of Rotating Magnetic Fields in Liquid Bridge

  • Zhang, Yi;Zeng, Zhong;Yao, Liping;Yokota, Yuui;Kawazoe, Yoshi;Yoshikawa, Akira
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.333-343
    • /
    • 2017
  • A rotating magnetic field (RMF) ${\Phi}_1-{\Phi}_2$ model was developed in consideration of the skin effect. The rotating magnetic field's induced three-dimensional flow was simulated numerically, and the influence of the skin effect was investigated. The rotating magnetic field drives the rotating convection in the azimuthal direction, and a secondary convection appears in the radial-meridional direction. The results indicate that ignoring the skin effect results in a smaller azimuthal velocity component and larger radial and axial velocity components, and that the deviation becomes more obvious with the larger dimensionless shielding parameter K.

Characteristic Analysis for CCFL drive of LCD backlight (LCD용 백라이트의 CCFL 구동을 위한 특성해석)

  • Ju, Gyeong-Don;Yoon, Shin-Yong;Kim, Cherl-Jin;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.199-202
    • /
    • 2004
  • CCFL(Cold Cathode Fluorescent Lamp) are used to backlight of LCD(Liquid Crystal Display). This paper presents analysis of half-bridge type resonant inverter of CCFL drive in order to stable characteristics, and fluorescent lamp operation frequency is higher than resonant frequency for safe operation. Besides, The Piezoelectric ceramic transformer (PZT) is electro-mechanical device that transfers electrical energy through a mechanical vibration. The modified equivalent circuit model of the PZT considering the operating current level is derived to design the CCFL. The validity of this study was confirmed from the simulation and experiential result.

  • PDF

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.

A Simulation Model of Cold Cathode fluorescent Lamp for High Frequency operation (고주파 구동 냉음극 형광방전램프의 시뮬레이션 모델)

  • Kim, Cherl-Jin;Yoo, Byeong-Kyu;Yoon, Shin-Yong;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1503-1505
    • /
    • 2005
  • The Cold cathode fluorescent lamp(CCFL) are widely used to illuminate the liquid crystal display(LCD). Ballasts are required for CCFL because the lamp need high starting voltage and behave negative dynamic resistant characteristics in the desired region of operation. Dimming methods of CCFL are used to pulse frequency modulation(PFM) or pulse width modulation(PWM). In this paper, CCFL driving and control circuit is designed by half-bridge type series and parallel resonant inverter that variable frequency modulation method to control the output voltage current. The validity of this study is confirmed from the simulation and experimental results.

  • PDF

Postmortem analysis of a failed liquid nitrogen-cooled prepolarization coil for SQUID sensor-based ultra-low field magnetic resonance

  • Hwang, Seong-Min;Kim, Kiwoong;Yu, Kwon Kyu;Lee, Seong-Joo;Shim, Jeong Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.44-48
    • /
    • 2014
  • A liquid nitrogen-cooled prepolarization ($B_p$) coil made for ultra-low field nuclear magnetic resonance and magnetic resonance imaging (ULF-MR) designed to generate 7 mT/A was fabricated. However, with suspected internal insulation failure, the coil was investigated in order to find out the source of the failure. This paper reports detailed build of the failed $B_p$ coil and a number of analysis methods utilized to figure out the source and the mode of failure. The analysis revealed that pyrolytic graphite sheet linings put on either sides of the coil for better thermal conduction acted as an electrical bridge between inner and outer layers of the coil to short out the coil whenever a moderately high voltage was applied across the coil. A simple model circuit simulation corroborated the analysis and further revealed that the failed insulation acted effectively as a damping resistor of $R_{d,eff}=6{\Omega}$ across the coil. This damping resistance produced a 50 ms-long voltage tail after the coil current was ramped down, making the coil not suitable for use in ULF-MR, which requires complete removal of magnetic field from $B_p$ coil within milliseconds.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.