• Title/Summary/Keyword: liposome essence

Search Result 3, Processing Time 0.024 seconds

Evaluation of Physical Properties of Liposome Essences as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type (맞춤형화장품 베이스로서 리포좀 에센스의 물성 평가 및 피부타입에 따른 만족도 평가)

  • An, Hyung Guen;Hyeon, Tong-Il;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Customized cosmetics are continuously mentioned as a trend in the cosmetics industry to respond to the recent rapid changes in the social environment and pursue individuality and diversity. Accordingly, four types of liposome essence corresponding to skin types were prepared by varying the ratio of liposome formulation and essence formulation as a customized cosmetic base that can be easily mixed and applied at the workplace. The volatilization residues of four types of liposome essence were measured and the nanoparticle size, polydispersity index, zeta potential and viscosity according to time for 90 d were measured, and Turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. In addition, a simple usability evaluation was performed for four types of liposome essence corresponding to the skin type. As a result, the amount of volatile residue in the four types of liposome essence was increased in dry products rather than oily ones, and the particle size showed a tendency to increase with time in the range of 165 to 175 nm, increasing up to 31.5%, and the polydispersity index was 0.23 to 0.26. There was little change with time, and the zeta potential was -74 to -72 mV, showing a slight decrease with time, but there was little change to the extent of a maximum decrease of 14.0%. Viscosity showed a decreasing trend with time in the range of 2,580 ~ 3,290 cps, showing a maximum decrease of 17.5%. In the turbiscan measurement, all of the turbiscan stability index, a measure of stability, were less than 1.0, indicating dispersion stability. In the overall simple usability satisfaction evaluation for skin types (6 points), products for oily skin (5.33 ± 0.75 points) > products for medium dry skin (5.13 ± 0.95 points) > products for dry skin (5.03 ± 0.96 points) > products for oily skin (4.80 ± 1.04 points) points) were evaluated in order. The four types of liposome essence corresponding to skin types with different ratios of liposome formulation and essence formulation were physically stable, and the possibility of application as a customized cosmetic base according to skin type was confirmed.

Combined Skin Moisturization of Liposomal Serine Incorporated in Hydrogels Prepared with Carbopol ETD 2020, Rhesperse RM 100 and Hyaluronic Acid

  • Kim, Hyeongmin;Ro, Jieun;Barua, Sonia;Hwang, Deuk Sun;Na, Seon-Jeong;Lee, Ho Sung;Jeong, Ji Hoon;Woo, Seulki;Kim, Hyewon;Hong, Bomi;Yun, Gyiae;Kim, Joong-Hark;Yoon, Young-Ho;Park, Myung-Gyu;Kim, Jia;Sohn, Uy Dong;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.543-547
    • /
    • 2015
  • We investigated the combined moisturizing effect of liposomal serine and a cosmeceutical base selected in this study. Serine is a major amino acid consisting of natural moisturizing factors and keratin, and the hydroxyl group of serine can actively interact with water molecules. Therefore, we hypothesized that serine efficiently delivered to the stratum corneum (SC) of the skin would enhance the moisturizing capability of the skin. We prepared four different cosmeceutical bases (hydrogel, oil-in-water (O/W) essence, O/W cream, and water-in-oil (W/O) cream); their moisturizing abilities were then assessed using a $Corneometer^{(R)}$. The hydrogel was selected as the optimum base for skin moisturization based on the area under the moisture content change-time curves (AUMCC) values used as a parameter for the water hold capacity of the skin. Liposomal serine prepared by a reverse-phase evaporation method was then incorporated in the hydrogel. The liposomal serine-incorporated hydrogel (serine level=1%) showed an approximately 1.62~1.77 times greater moisturizing effect on the skin than those of hydrogel, hydrogel with serine (1%), and hydrogel with blank liposome. However, the AUMCC values were not dependent on the level of serine in liposomal serine-loaded hydrogels. Together, the delivery of serine to the SC of the skin is a promising strategy for moisturizing the skin. This study is expected to be an important step in developing highly effective moisturizing cosmeceutical products.

Study on Application of Skin Care Cosmetic and Stabilization of Idebenone by Forming Niosome Vesicle Technology

  • Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.592-599
    • /
    • 2019
  • This study is to stabilize insoluble and unstable active ingredient which is Idebenone (INCI name: hydroxydecyl ubiquinone) in a multi-lamellar vesicle (MLV) and to stabilize it in the skin care cosmetics. Idebenone is good effective raw material in the treatment of Alzheimer's disease in the medical field and a powerful antioxidant in dermatology. It is well known as a substance that inhibits the formation of melanin and cleans the skin pigment. However, it did not dissolve in any solvent and it was difficult to apply in cosmetic applications. Niosome vesicle was able to develop a nano-particle by making a multi-layer of idebenone encapsulated with a nonionic surfactant, hydrogenated lecithin and glycine soja (soybean) sterols and passing it through a high pressure microfluidizer. Idebenone niosome vesicle (INV) has been developed to have the ability to dissolve transparently in water and to promote transdermal penetration. The appearance of the INV was a yellowish liquid having specific odor, and the particle size distribution of INV was about 10~80 nm. The pH was 5~8 (mean=6.8). This capsulation with idebenone was stored in a $45^{\circ}C$ incubator for 3 months and its stability was observed and quantitatively measured by HPLC. As a result, the stability of the sample encapsulated in the niosome vesicle (97.5%) was about 66.3% higher than that of the non-capsule sample of 32.5%. Idebenone 1% INV was used for the efficacy test and clinical trial evaluation as follows. The anti-oxidative activity of INV was 38.2%, which was superior to that of 12.8% tocopherol (control). The melanin-reducing effect of B16 melanoma cells was better than INV (17.4%) and Albutin (control) (9.6%). Pro-collagen synthesis rate was 128.2% for INV and 89.3% for tocopherol (control). The skin moisturizing effect was 15.5% better than the placebo sample. The elasticity effect was 9.7% better than the placebo sample. As an application field, INV containing 1% of idebenone is expected to be able to develop various functional cosmetic formulations such as skin toner, ampoule essence, cream, eye cream and sunblock cream. In addition, it is expected that this encapsulated material will be widely applicable to emulsifying agents for skin use in the pharmaceutical industry as well as the cosmetics industry.