• Title/Summary/Keyword: lipid-bilayer

Search Result 89, Processing Time 0.02 seconds

Increase of Large Conductance $Ca^{2+}$-Activated $K^+$(Maxi-K) Channel Activities by Nitric Oxide (NO) is due to Destabilizing the Long Closure State

  • Shin, Jung-Hoon;Sungkwon Chung;Park, Eun-Joo;Uhm, Dae-Yong;Suh, Chang-Kook
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.24-24
    • /
    • 1997
  • We have investigated whether NO affects the activities of the rat brain Maxi- K channels reconstituted into the lipid bilayer. In order to introduce NO, we utilized an antibiotic, streptozotocin (STZ), which releases NO upon illumination. While adding STZ itself did not affect the channel activity, turning on the light in the presence of STZ induced an increase in the open probability (Po) of the channel.(omitted)

  • PDF

The Interaction of Mastoparan B from Venom of a Hornet Vespa Basalis with Phospholipid Matrices

  • 박남규;Yuhji Yamato;Sannamu Lee;Gohsuke Sugihara;박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.239-244
    • /
    • 1996
  • Mastoparan B (MP-B) that is a novel MP isolated from the hornet Vespa basalis, was studied as compared with MP, in terms of interaction with phospholipid bilayer and antimicrobial activity. MP-B has more hydrophilic amino acid residues in hydrophilic face of amphiphilic α-helical structure than MP. The both peptides exhibited considerably different effect on interaction with lipid bilayers, e.g. their conformation in the presence of acidic and neutral liposomes, dye-release ability from encapsulated liposomes, but on the whole the interaction mode was similar. On antimicrobial activity, MP had a strong activity against Gram-positive bacteria but no against Gram negative ones. Contrary to this, MP-B had a strong activity against Gram-positive and potent against Gram-negative ones. Since both peptides have almost same residues on the hydrophobic side, such more hydrophilic surface on the molecule seems to lead to the subtle change in its interaction with membranes, resulting in the alternation in its biological activity.

Effects of the Hinge Region of Cecropin A(1-8)-Melittin 2(1-12), a Synthetic Antimicrobial Peptide on Antibacterial, Antitumor, and Vesicle-Disrupting Activity

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, KiI-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.561-566
    • /
    • 1999
  • CA(1-8)-ME(1-12) [CA-ME], composed of cecropin A(1-8) and melittin(1-12), is a synthetic antimicrobial peptide having potent antibacterial and antitumor activities with minimal hemolytic activity. In order to investigate the effects of the flexible hinge sequence, Gly-Ile-Gly, of CA-ME on antibiotic activity, CA-ME and three analogues, CA-ME1, CA-ME2, and CA-ME3, were synthesized. The Gly-Ile-Gly sequence of Ca-ME was deleted in CA-ME1 and replaced with Pro and Gly-Pro-Gly in CA-ME2 and CA-ME3, respectively. CA-ME1 and CA-ME3 showed a significant decrease in antitumor activity and phospholipid vesicle-disrupting ability. However, CA-ME2 showed similar antitumor and vesicle-disrupting activities, as compared with CA-ME. These results suggest that the flexibility or ${\beta}$-turn induced by Gly-Ile-Gly or Pro in the central part of CA-ME may be important in the electrostatic interaction of the N-terminus cationic ${\alpha}$-helical region with the cell membrane surface and the hydrophobic interaction of the C-terminus amphipathic ${\alpha}$-helical region with the hydrophobic acyl chains in the cell membrane. CA-ME3 exhibited lower antitumor and vesicle-disrupting activities than CA-ME and CA-ME2. This result suggests that the excessive ${\beta}$-turn structure caused by the Gly-Pro-Gly sequence in CA-ME3 seems to interrupt ion channel/pore formation in the lipid bilayer. We concluded that the appropriate flexibility or bilayer. We concluded that the appropriate flexibility or ${\beta}$-turn structure provided by the central hinge is responsible for the effective antibiotic activity of the antimicrobial peptides with the helix-hinge-helix structure.

  • PDF

Modulation of the Specific Interaction of Cardiolipin with Cytochrome c by Zwitterionic Phospholipids in Binary Mixed Bilayers: A $^2H$-and $^{31}P$-NMR Study

  • Kim, Andre;Jeong, In-Chul;Shim, Yoon-Bo;Kang, Shin-Won;Park, Jang-Su
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.446-451
    • /
    • 2001
  • The interaction of cytochrome c with binary phospholipid mixtures was investigated by solid-state $^2H$- and $^{31}P$-NMR. To examine the effect of the interaction on the glycerol backbones, the glycerol moieties of phosphatidylcholine (PC), and cardioliph (CL) were specifically deuterated. On the binding of cytochrome c to the binary mixed bilayers, no changes in the quadrupole splittings of each of the components were observed for the PC/PG, PE/CL and PE/PG liposomes. In contrast, the splittings of CL decreased on binging of protein to the PC/CL liposomes, although those of PC did not change at all. This showed that cytochrome c specifically interacts with CL in PC/CL bilayers, and penetrates into the lipid bilayer to some extent so as to perturb the dynamic structure of the glycerol backbone. This is distinctly different from the mode of interaction of cytochrome c with other binary mixed bilayers. In the $^{31}P$-NMR spectra, line broadening and a decrease of the chemical shift anisotropy were observed on the binding of cytochrome c for all binary mixed bilayers that were examined. These changes were more significant for the PC/CL bilayers. Furthermore, the line broadening is more significant for PC than for CL in PC/CL bilayers. Therefore, it can be concluded that with the polar head groups, not only CL but also PC are involved in the interaction with cytochrome c.

  • PDF

Effect of Dietary Fat on Structure and Function of Mammalian Cell Membrane (식이지방이 생체막 구조와 기능에 미치는 영향)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.4
    • /
    • pp.459-468
    • /
    • 1984
  • The currently accepted model of membrane structure proposes a dynamic, asymmetric lipid matrix of phospholipids and cholesterol with globular proteins embedded across the membrane to various degrees. Most phospholipids are in the bilayer arrangement and also closely associated with integral membrane proteins or loosely associated with peripheral proteins. Biological functions of membrane, such as membrane-bound enzyme functions and transport systems, are influenced by the membrane physical properties, which are determined by fatty acid composition of phospholipids, polar head group composition and membrane cholesterol content. Polar and non-polar region of the phospholipid molecule can interact, with changes in the conformation of a membrane-associated protein altering either its catalytic activity or the protein's interaction with other membrane proteins. Mammalian dietary studies attempted to change the lipid composition of a few cell membranes have shown comparisons, using essential fatty acid-deficient diets. In recent years, Clandinin and a few other workers have pioneered the study proving the influence of dietary fat fed in a nutritionally complete diet on composition of phospholipid classes of cell membrane. Modulation caused by diet fat was rapid and reversible in phospholipid fatty acyl composition of membranes of cardiac mitochondria, liver cell, brain synaptosome and lymphocytes. These changes were at the same time, accompanied by variety of membrane associated functions controlled by membrane-bound enzymes, tranporter and receptor proteins. The findings suggest the basic concept of the necessity of dietary fatty acid balance if consistency of optimal membrane structural lipid composition is to be maintained, as well as the overall inadequacy of describing the nutritional-biochemical quality of a dietary fat solely by its content of linoleic acid. Furthermore, they give light on the possible application to clinical and preventive medicine.

  • PDF

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

Characterization of Sea Urchin Gonad-derived Extracellular Vesicles and Study of Their Effects on Nerve Cells (성게 생식소 유래 세포외소포체 특성 분석 및 신경세포에 미치는 영향 연구)

  • Byeong-Hoon Choi;Sung-Han Jo;Sang-Hyug Park
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.20-25
    • /
    • 2024
  • Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by cells. EVs act as messengers for cell-to-cell communication. Inside, it contains various substances that show biological activity, such as proteins, lipids, nucleic acids, and metabolites. The study of EVs extracted from terrestrial organisms and stem cells on inflammatory environments and tissue regeneration have been actively conducted. However, marine organisms-derived EVs are limited. Therefore, we have extracted EVs from sea urchins belonging to the Echinoderm group with their excellent regenerative ability. First, we extracted extracellular matrix (ECM) from sea urchin gonads treated with hypotonic buffer, followed by collagenase treatment, and filtration to collect ECM-bounded EVs. The size of sea urchin gonad-derived EVs (UGEVs) is about 20-100 nm and has a round shape. The protein content was higher after EVs burst than before, which is evidence that proteins are contained inside. In addition, proteins of various sizes are distributed inside. PKH-26 was combined with UGEVs, which means that UGEVs have a lipid membrane. PHK-26-labeled UGEVs were successfully uptaken by cells. UGEVs can be confirmed to have the same characteristics as traditional EVs. Finally, it was confirmed that Schwann cells were not toxic by increasing proliferation after treatment.

The Stabilizing Effects of Phospholipids on the Human Erythrocyte Membranes (인체적혈구막(人體赤血球膜) 안정화(安定化)에 미치는 인지질(燐脂質)의 영향(影響))

  • Kim, Yong-Ki;Kim, Jae-Back
    • Journal of Pharmaceutical Investigation
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1981
  • Phospholipids were examined for their capacity to protect human erythrocytes against hemolysis induced by hypotonic solution, p-hydroxymercuribenzoate or hematin. The following results were obtained. 1. Phosphatidyl choline, lysophosphatidyl choline and phophatidyl ethanoleamine as well as chlorpromazine prevented the osmotic hemolysis of human erythrocytes which occurred due to water influx into erythrocytes from medium, but showed no effect on hematin-induced hemolysis which occurred without the volume change of erythrocytes. 2. Human erythrocytes were found to be most sensitive to the antihemolytic action of phospholipids among mammalian erythrocytes from sheep, rabbit, rat and mouse. 3. Phospholipids at the concentrations showing their strong antihemolytic effect on human erythrocytes against osmotic hemolysis had no influence on methylene blue uptake and volume change of erythrocytes in hypotonic solution. 4. Phospholipids increased erythrocyte deformability 2 to 3 times over control group and there was aclose relationship between their antihemolytic action and increase of deformability as a function of their concentrations. 5. The phospholipids increased the resistance to osmotic hemolysis of human erythrocytes by increasing membrane elasticity through their incorporation into lipid bilayer without altering glucose metabolism and water influx to erythrocytes.

  • PDF

The Thermotropic Phase Behaviors of Artificial Phospholipid Liposomes Incorporated with Soyasaponin (대두사포닌이 침투된 인공 인지질 생체유사막의 열에 의한 상변화에 관한 연구)

  • Kim, Nam-Hong;Roh, Sung-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.323-327
    • /
    • 1993
  • The effect of soyasaponin on the liposomal phospholipid membrane was investigated by differential scanning calorimetry (DSC). Soyasaponins were obtained and the enthalpy changes and the sizes of cooperative unit of the transition were calculated. The thermograms of L-$\alpha$-dimyristoyl phosphatidylcholine (DMPC) incorporated with soyasaponin showed that the phase transition temperature was significantly lowered and the peak was broadened. This was attributed to the possibility that incorporation of soyasaponin into the lipid bilayers reduced the cooperative unit of phospholipid bilayers. These results indicate soyasaponin might have significant effect on the fluidity of biological membrane.

  • PDF

Inhibitory Effect of $Mg^{2+}$ on the Release of $Ca^{2+}$ from Ryanodine Receptor of the Sarcoplasmic Reticulum in the Skeletal Muscle (골격근 망상체 $Ca^{2+}$유리 Channel[Raynodine receptor]의 $Mg^{2+}$에 의한 유리 억제)

  • 이철주
    • Journal of Chest Surgery
    • /
    • v.25 no.4
    • /
    • pp.347-355
    • /
    • 1992
  • The precise mechanism of the Excitation-Contraction Coupling is still uncertain. But the concept that Ca2+ induced Ca2+ release [CICR] from the Ryanodine receptor in the sarcoplasmic reticulum [foot structure] may play a major role in E-C coupling has been widely accepted since 1970`s. It is believed that increased cytosolic Ca2+ followed by CICR is main contributor for E-C coupling of striated muscle. Resulting phenomena of ischemic /post-reperfusion myocyte is increased cytosolic Ca2+, even to the absence of Ca2+ in reperfusate. So intracellular inhibitor to CICR might prevent the ischemic and reperfusion damage of myocardial cells. The relatively purified foot protein, especially heavy sarcoplasmic reticulum rich, of the skeletal muscle was incorporated into the black lipid bilayer [Phosphatidyl ethanolamine: Phosphatidyl serine=l: 1]. Under the steady state of membrane potential [+20 mV], ionic current through Ryanodine receptor was measured with Cs+ as charge carrier. In the cis chamber [Cytoplasmic side], Mg2+ strongly inhibited CICR of Ryanodine receptor[Kd=6.2 nM]. In conclusion, naturally existing intracellular free Mg2+ can inhibit CICR from intracellular Ca2+ reservior [heavy SR]. So post-ischemic or post-reperfusing myocardium could be preserved using additional free Mg2+ in cardioplegic solution or reperfusate, otherwise the optimal concentration is undetermined.

  • PDF