• Title/Summary/Keyword: lipid-bilayer

Search Result 89, Processing Time 0.031 seconds

TWO TYPES OF $BA^{2+}$ BINDING SITES ON $K^+$ CHANNELS WITH DIFFERENT SENSITIVITY TO MEMBRANE SURFACE CHARGE

  • Park, Jin-Bong;Ryu, Pan-Dong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.34-34
    • /
    • 1996
  • Previously we showed that $Ba^{2+}$ block of large conductance $Ca^{2+}$-activated $K^{+}$ (BK) channel was larger in the planar lipid bilayer formed with negatively-charged phosphatidylserine (PS) than neutral phosphatidylethanolamine (PE). In this work, have studied the blocking effect of two $K^{+}$ channel blockers with different mechanisms of action, $Ba^{2+}$ and tetraethylammonium (TEA), on BK channels of rat skeletal muscle. (omitted)itted)

  • PDF

"OPEN" STRUCTURE OF SecA PROTEIN OF ESCHERICHIA COLI IN SOLUTION

  • Maengseok Song;Kim, Hyounman
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.27-27
    • /
    • 1996
  • SecA protein which has a pivotal role in the preprotein cranslocation across the inner membrane of Escherichia coli is a water-soluble protein with an unusual property of penetrating the membrane readily. An interesting and important question is what structural characteristics of SecA enables its ready penetration of lipid bilayer. The conformational properties of SecA in solution at 3$0^{\circ}C$, pH 7.5 were observed by hydrogen-tritium (HT) exchange, and denaturant-induced denaturation/renaturation and thermal unfolding. (omitted)

  • PDF

Effects of chitosan on the decreased renal dipeptidase release by nitric oxide from renal proximal tubules

  • Yoon, Hyun-Joong;Park, Eun-Mi;Park, Haeng-Soon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.319.2-319.2
    • /
    • 2002
  • Chitin is a major component of the shells of crustacea such as crab. shrimp and crawfish. Renal dipeptidase (RDPase. EC 3.4.13.19), an ectoenzyme of renal proximal tubules. is covalently bound to outer leaflet of lipid bilayer via glycosylphosphatidylinositol (GPI)-anchor. The biological role of RDPase was suggested as the hydrolysis of dipeptide into free-amino acids before renal reabsorption. The underlying biochemical mechanism of decreased RDPase release was suggested as nitric oxide (NO) production. (omitted)

  • PDF

An NMR Study on the Phase Changes of Lipid Bilayers by Antimicrobial Peptides (항균성 펩타이드에 의한 지질 이중막의 상 변화에 대한 NMR 연구)

  • Kim, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • The phase changes of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) bilayers distorted by an antimicrobial peptide, a magainin 2 or an aurein 3.3 were investigated by using $^2H$ solid-state NMR (SSNMR) spectroscopy. From the theoretical simulation of the experimental $^2H$ solid-state NMR spectra the geometric structure constants and the lateral diffusion coefficients were obtained in the peptide-lipid mixture phases. Within five days of the peptide action on the lipid bilayers only the distorted alignment of the bilayers were measured but after 100 days an elliptic toroidal pore structure and an inverted hexagonal phase were formed in the presence of magainin 2 and aurein 3.3, respectively. In order to investigate the effect of an anionic lipid molecule on the actions of two peptides on the lipid bilayer, the same experiments were performed on the POPC_$d_{31}$/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) bilayer and the significant differences in the actions of two peptides on two bilayers of POPC_$d_{31}$ and POPC_$d_{31}$/POPG were measured.

Effect of saltss on the entrapment of calf thymus DNA into liposomes

  • Kim, Chong-Kook;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 1987
  • To correlate the conformational changes of DNA (Calf Thymus) with entrapment of DNA into liposomes, the effect of ions ($Na^+$, $Mg^{++}$on the entrapment of calf thymus DNA into liposomes was investigated. The effect of divalent ion ($Mg^{++}$ on the structural changes of DNA indicated by decrease of observed ellipticity at 274 nm and nonspecific binding of DNA to lipid bilayers was greater than monovalent ion ($\Na^+$). But the efficiency of DNA encapsulated was not altered. These results show that entrapment of DNA into liposomes is not due to nonspecific binding and structural changes because of electrostatic forces but to mechanical capture of DNA by the internal aqueous space of liposomes although divalent ion contributes large structural changes and more nonspecific association of DNA with liposomes due to strong charges.

  • PDF

Effects of Recombinant Imperatoxin A (IpTxa) Mutants on the Rabbit Ryanodine Receptor

  • Seo, In-Ra;Choi, Mu-Rim;Park, Chul-Seung;Kim, Do Han
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.328-335
    • /
    • 2006
  • Imperatoxin A ($IpTx_a$), a 3.7 kDa peptide from the African scorpion Pandinus imperator, is an agonist of the skeletal muscle ryanodine receptor (RyR1). In order to study the structure of the toxin and its effect on RyR1, $IpTx_a$ cDNA was PCR-amplified using 3 pairs of primers, and the toxin was expressed in E. coli. The toxin was further purified by chromatography, and various point mutants in which basic amino acids were substituted by alanine were prepared by site-directed mutagenesis. Studies of single channel properties by the planar lipid bilayer method showed that the recombinant $IpTx_a$ was identical to the synthetic $IpTx_a$ with respect to high-performance liquid chromatography mobility, amino acid composition and specific effects on RyR1. Mutations of certain basic amino acids ($Lys^{19}$, $Arg^{23}$, and $Arg^{33}$) dramatically reduced the capacity of the peptide to activate RyRs. A subconductance state predominated when $Lys^8$ was substituted with alanine. These results suggest that some basic amino acid residues in $IpTx_a$ are important for activation of RyR1, and that $Lys^8$ plays an important role in regulating the gating mode of RyR1.

Photoelectron Transport Across Phospholipid Liposomes Pigmented by Anthracene and Naphthalene Derivatives

  • Lee, Yong-Ill;Kwon, Hwang-Won;Shin, Dae-Hyon;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.120-124
    • /
    • 1986
  • In order to investigate effective solar energy conversion system, the light-induced electron transfer reactions have been examined across single-lamellar liposomes incorporated organic photosensitizers such as anthracene and naphthalene derivatives. We have observed photosensitized reduction of methyl viologen (1,1'-dimethyl-4,4'-$bipyridinium^{2+}$) dissolved in the exterior aqueous phase of the pigmented phospholipid liposomes when EDTA, as electron donor, is dissolved in the enclosed aqueous phase of the liposomes. The anthroyl stearic acid incorporated in the hydrophobic bilayer of liposomes leads to much less quantum yield for the photosensitized reduction of $MV^{2+}$ than the anthracene carboxylate incorporated in the outer hydrophilic layer. However, ${\beta}$-carotene with anthroyl stearic acid incorporated into the bilayer enhances the quantum yield significantly (${\Phi}{\simeq}0.2-0.3$), preventing the reverse reaction of electron transfer ($MV^+_\ {\rightarrow}MV^{2+}$) so that it might be useful for solar energy conversion into chemical energy. A naphthalene derivative, octadecyl naphthylamine sulfonic acid incorporated into the outer layer of liposomes results in less efficiency of $MV^{2+}$ reduction than anthroyl stearic acid. These results have been also tested with respect to lipid components of liposomes.

Effect of Cholesterol on the Phase Change of Lipid Membranes by Antimicrobial Peptides

  • Choi, Hyungkeun;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1317-1322
    • /
    • 2014
  • Membrane disruption by an antimicrobial peptide (AMP) was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in mixtures of POPC_$d_{31}$/cholesterol and either magainin 2 or aurein 3.3 deposited on thin cover-glass plates. The line shapes of the experimental $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra were best simulated by assuming the coexistence of a mosaic spread of bilayers containing pore structures and a fasttumbling isotropic phase or a hexagonal phase. Within a few days of incubation in a hydration chamber, an isotropic phase and a pore structure were induced by magainin 2, while in case of aurein 3.3 only an isotopic phase was induced in the presence of a bilayer phase. After an incubation period of over 100 days, alignment of the bilayers increased and the amount of the pore structure decreased in case of magainin 2. In contrast with magainin 2, aurein 3.3 induced a hexagonal phase at the peptide-to-lipid ratio of 1/20 and, interestingly, cholesterol was not found in the hexagonal phase induced by aurein 3.3. The experimental results indicate that magainin 2 is more effective in disrupting lipid bilayers containing cholesterol than aurein 3.3.

Intracellular delivery and anti-tumor activity of polyethyleneglycol liposomes containing cationic lipid (양이온성 지질이 포함된 PEG 리포솜의 세포내 이입 및 항암효력 평가)

  • Jung, Soon-Hwa;Kim, Sung-Kyu;Jung, Suk-Hyun;Seong, Ha-Soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • Liposomes are spherical vesicles composed of lipid bilayer membranes. However, the conventional liposomes have been found to be plagued by rapid opsonization and taken up by the reticuloendothelial system (RES), resulting in shortened circulation time and limited intracellular uptake to target cell. In this study, polyethyleneglycol-cationic liposomes (PCL) containing cationic lipid and DSPE-mPEG were prepared by thin film cast-hydration method. The PEG liposomes had approximately $97.0{\pm}1.3\;nm$ of mean particle diameter and $-21.7{\pm}1.2\;mV$ of zeta potential value. PCL had $96.4{\pm}1.8\;nm$ of mean particle diameter and $-8.7{\pm}1.1\;mV$ of zeta potential value with a decrease of about 10 mV compared to the PEG liposomes. Loading of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX in liposomes was about $95.0{\pm}1.9%$. Intracellular uptake and cytotoxicity of PCL were higher than that of PEG liposomes to murine B16F10 melanoma cells. In addition, anti-tumor activity of PCL was similar to that of PEG liposomes on growth of A549 human lung carcinoma in BALB/c mice. Consequently, PCL modified with cationic lipid may be applicable as anticancer drug carriers that can increase intracellular uptake and therapeutic efficacy.

Facilitation of tolaasin-induced hemolysis by phospholipids composed of medium-chain fatty acids (중간크기 탄소사슬의 지방산으로 이루어진 인지질에 의한 tolaasin의 용혈활성 촉진)

  • Yun, Yeong-Bae;Kim, Min-Hee;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.221-225
    • /
    • 2016
  • Tolaasin is a pore-forming peptide toxin produced by Pseudomonas tolaasii and causes a brown blotch disease by disrupting membrane structures of cultivated mushrooms. The mechanism and characteristics of tolaasin pore formation are not known in detail; however, tolaasin pores have been demonstrated in the artificial lipid bilayer. Since the tolaasin pore appeared less frequently and unstable in lipid bilayer, a mismatch between the length of tolaasin pore and the thickness of lipid membrane had been suggested. Therefore, tolaasin-induced hemolyses were measured by the additions of phospholipids composed of various fatty acids with different carbon numbers. When phosphatidylethanolamines made with two decanoic acids (C10:0, 1,2-didecanoyl-sn-glycero-3-phosphoethanolamine; DDPE), myristic acids (C14:0, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine), and stearic acids (C18:0, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine) were added to the buffer containing RBCs and tolaasin peptides, DDPE facilitated the tolaasin-induced hemolysis while the other two phospholipids showed no effects. At various concentrations of DDPE, the tolaasin-induced hemolysis was stimulated as a dose-dependent manner. The phospholipids composed of mediumchain fatty acids stabilize the tolaasin pore probably by binding between the pore structure and membrane phospholipids and making the membrane thickness thinner around the pore. These results showed that tolaasin molecules make more stable pores in the membrane made with phospholipids composed of medium length fatty acids, suggesting that the length of tolaasin pore is a little shorter than the thickness of RBC membrane.