• Title/Summary/Keyword: lipid oxidation

Search Result 1,116, Processing Time 0.023 seconds

Oxidative Stability and Antioxidant Changes in Perilla Seeds and Perilla Oil Affected by UV Irradiation (들깨 및 들기름의 자외선 조사 중 지방질 산화와 산화방지제의 변화)

  • Wang, Seon-Yeong;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • Effects of UV irradiation on lipid oxidation in perilla seeds and perilla oil were evaluated by determining the contents of peroxides, conjugated dienoic acids, and thiobarbituric acid reactive substances, and analyzing fatty acid composition. Tocopherols and polyphenol contents were also determined. Perilla seeds were unroasted or roasted at $180^{\circ}C$ for 20 min, and perilla oil was obtained by pressing the roasted perilla seeds. Lipid oxidation during UV irradiation was higher and faster in perilla oil than that in perilla seeds, with a slight loss of linolenic acid. Unroasted perilla seeds were more oxidation-stable than roasted seeds. Tocopherols and polyphenols were degraded during UV irradiation, with a higher degradation rate observed in unroasted perilla seeds than in roasted ones. Antioxidant concentration dependency of the lipid oxidation during UV irradiation was higher in perilla oil than that in perilla seeds, and the contribution of polyphenols to oxidative stability was higher than that of tocopherols in all samples.

Effect of Polyphenolic Compounds from Green Tea Leaves on Production of Hydroperoxide for Lipid Oxidation in Corn Oil-in-Water Emulsion (녹차 페놀류가 corn oil-in-water emulsion의 산화 중 hydroperoxide 생성에 미치는 영향)

  • Cho, Young-Je;Kim, Byung-Gyu;Chun, Sung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Effect of polyphenolic compounds from green tea leaves and surfactant micelles on lipid oxidation in corn oil-in-water emulsion (O/W) wag determined. Concentrations of polyphenolic compound and surfactant in continuous phase of O/W were measured. Particle size of O/W with 17 mM Brij 700 and 5% corn oil increased with increasing concentration of polyphenolic compound (100-200 ppm). Concentration of surfactant in the continuous phase was lower than that of control. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in O/W emulsions containing polyphenolic compounds decreased with increasing concentration of polyphenolic compounds (100-200 ppm). Inhibition of hydroperoxide and headspace hexanal produced via lipid oxidation by polyphenolic compounds in O/W was BHT>procyanidin B3-3-O-gallate>(+)-gallocatechin >(+)-catechin.

Effect of Storage Conditions on the Oxidative Stability of Lipid in Roasted and Roasted-Seasoned Laver(Porphyra tenera) (배소김과 조미김의 지방질 산화 안정성에 대한 저장 조건의 영향)

  • Jo, Kil-Suk;Kim, Jun-Hwan;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.902-908
    • /
    • 1995
  • Oxidative factors of lipid in the roasted laver Porphyra tenera(RL) and roasted-seasoned laver(R-SL) depending on various light sources, water activities, packaging materials and storage temperatures were investigated by peroxide value and color. Major fatty acids of RL were 46.4% eicosapentaenoic acid and 14.9% palmitic acid. Lipid oxidation was decreased in order of darkness, incandescent and fluorescent, decreased sharply with the decrease of water activity and temperature, and also reduced by the packaging material with strong barriers of water vapor, oxygen and light. From kinetics of lipid oxidation, it was supposed that oxidation of R-SL was three times faster than RL. On the other hand, reduction of the total chlorophyll content in RL was stronger than R-SL.

  • PDF

Effects of Basil Extract and Iron Addition on the Lipid Autoxidation of Soybean Oil-in-Water Emulsion with High Oil Content (고지방 물속 콩기름 에멀션의 지방질 자동 산화에서의 바질 추출물과 철 첨가 효과)

  • Kim, Jihee;Lee, Haein;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2017
  • Purpose: Lipid autoxidation of a soybean oil-in-water emulsion with high oil content was studied under after basil extract and/or iron addition. Methods: The emulsion consisted of tocopherol-stripped soybean oil (40 g), citrate buffer (60 g, pH 4.0), and/or $FeSO_4$ (0.5 mg) with 75% ethanol extract (200 mg/kg) of basil (Ocimum basilicum). Lipid oxidation was evaluated using headspace oxygen content, hydroperoxide contents, and p-anisidne values of the emulsion. Polyphenol compound retention in the emulsion during oxidation was determined spectrophotometrically. Results: Addition of basil extract significantly (p<0.05) decreased reduced hydroperoxide contents of the emulsion, and iron significantly (p<0.05) increased anisidine values and decreased oxygen contents. Co-addition of basil extract and iron showed significantly (p<0.05) lower reduced hydroperoxide contents in the emulsion than compared to those of the emulsion with added iron and the control emulsion without basil extract nor or iron. During the emulsion oxidation, polyphenol compounds in the emulsion with added basil extract were degraded, but more slowlywhich was slowed degraded in the presence of iron. Conclusion: The iIron increased the lipid oxidation through hydroperoxide decomposition, and basil extract showed antioxidant activity through radical-scavenging and iron-chelation. Polyphenol degradation was decelerated by iron addition, which suggested suggests iron chelation may be more preferred topreferentially activated over radical scavenging in the antioxidant action by of basil extract in the oil-in-water emulsion with high oil content.

Effect of Surfactant Micelles on Lipid Oxidation in Oil-in-water Emulsion Containing Soybean Oil (Surfactant micelle이 수중유적형 유화계내의 대두유 산화에 미치는 영향)

  • Cho, Young-Je;Chun, Sung-Sook;Decker, Eric A.
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.770-774
    • /
    • 2002
  • Effect of surfactant micelles on lipid oxidation was determined in soybean oil-in-water (O/W) emulsions. The concentration of ferric irons to continuous phase in the O/W emulsions was measured as a function of various Brij type and concentrations. The concentration of ferric iron in the continuous phase increased with increasing surfactant micelles concentration $(0.5{\sim}2.0%)$ and storage time $(1{\sim}7\;days)$. At pH 3.0, the concentration of continuous phase iron was higher than at pH 7.0. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in the O/W emulsions containing ferric iron decreased with increasing surfactant micelle concentration $(0.5{\sim}2.0%)$. These results indicate that surfactant micelles concentration could alter the physical location and prooxidant activity of iron in soybean O/W emulsions.

Production system influences color stability and lipid oxidation in gluteus medius muscle

  • Ana Paula Amaral de Alcantara Salim;Micheli da Silva Ferreira;Maria Lucia Guerra Monteiro;Loise Caroline Santos de Lima;Isabelle Trezze Marins Magalhaes;Carlos Adam Conte-Junior;Sergio Borges Mano
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • Objective: We aimed to evaluate the color and oxidative stability of beef gluteus medius (GM) from cattle raised in organic and non-organic production systems. Methods: The GM samples (n = 10) were obtained from organic (ORG; n = 5) or nonorganic (NORG; n = 5) beef samples, sliced into 2.54-cm steaks, packaged in aerobic conditions, and stored for nine days at 4℃. ORG and NORG steaks were compared regarding myoglobin concentration, pH, instrumental color, delta E (ΔE), metmyoglobin reducing activity (MRA), and lipid oxidation on days 0, 5, and 9. Results: Feeding system did not influence (p>0.05) the myoglobin concentration. ORG steaks exhibited greater (p<0.05) meat pH, yellowness, and MRA, whereas NORG steaks exhibited greater (p<0.05) redness, chroma, R630/580, delta E, and lipid oxidation. ORG and NORG steaks exhibited similar (p>0.05) lightness and hue angle. During storage, ORG and NORG exhibited an increase in muscle pH, hue angle, and lipid oxidation; and a decrease (p<0.05) in redness, yellowness, chroma, and color stability (R630/580). Both samples exhibited a stable (p>0.05) pattern for lightness and MRA. Conclusion: Therefore, the production system can affect beef color and lipid stability during storage.

Comparative Analysis on Antioxidative Ability of Muscle between Laiwu Pig and Large White

  • Chen, Wei;Zhu, Hong-Lei;Shi, Yuan;Zhao, Meng-Meng;Wang, Hui;Zeng, Yong-Qing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1190-1196
    • /
    • 2012
  • This study was conducted to evaluate effects of storage temperatures ($4^{\circ}C$ and $20^{\circ}C$) and pig breeds (Laiwu pig and Large White pig) on the main antioxidative enzymes (superoxide dismutase, catalase, and glutathione peroxidase) activity and lipid oxidation in porcine Longissimus dorsi muscle. Activities of antioxidative enzymes (AOE) decreased slightly during storage, regardless of storage temperatures. Muscle antioxidative enzymes activities stored at $4^{\circ}C$ were higher than that stored at $20^{\circ}C$. Laiwu pig's enzymes activities were significantly (p<0.01) higher than Large White's. The level of malondialdehyde is a direct expression of the grade of lipid oxidation in meat. In our study, the malondialdehyde contents increased after 6 days storage. However, malondialdehyde contents of Laiwu pig were significantly (p<0.01) lower than Large White's. A lower content of malondialdehyde corresponds to a lower oxidation of lipids. These results indicated the muscle antioxidative ability of Laiwu pig was higher than Large White pig. It also implied that antioxidative enzymes were involved in the essentials and deciding mechanisms of meat quality by quenching oxygen free radicals and inhibiting lipid oxidation in muscle.

Lipid oxidation and antioxidant mechanisms in different matrix (매질(matrix)에 따른 지방산화 및 산화방지능 메커니즘)

  • Yi, BoRa;Kim, Mi-Ja;Lee, JaeHwan
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.127-135
    • /
    • 2018
  • The action of antioxidants was different depending on the environments where antioxidants were located. Although basic mechanisms of lipid oxidation and antioxidants were related each other, their contribution on the degree of oxidation was different. In thisreview, terminology on antioxidant properties were defined such as antioxidant activity and antioxidant capacities. In addition, antioxidant mechanisms including primary and secondary antioxidants or hydrogen donating or electron transferring antioxidants were introduced. Also, the impact of physical points of view and antioxidant polar paradox were introduced. Depending on the types of food matrice including bulk oil, oil-in-water emulsion (O/W), or solid state, antioxidant actions showed different degree and this point was explained in detail.

Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein

  • Kim, Hyun-Joo;Cha, Gil Sun;Kim, Hyung-Joon;Kwon, Eun-Young;Lee, Ju-Youn;Choi, Jeomil;Joo, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the ability of Porphyromonas gingivalis (P. gingivalis) to induce oxidation of high-density lipoprotein (HDL) and to determine whether the oxidized HDL induced by P. gingivalis exhibited altered antiatherogenic function or became proatherogenic. Methods: P. gingivalis and THP-1 monocytes were cultured, and the extent of HDL oxidation induced by P. gingivalis was evaluated by a thiobarbituric acid-reactive substances (TBARS) assay. To evaluate the altered antiatherogenic and proatherogenic properties of P. gingivalistreated HDL, lipid oxidation was quantified by the TBARS assay, and tumor necrosis factor alpha (TNF-${\alpha}$) levels and the gelatinolytic activity of matrix metalloproteinase (MMP)-9 were also measured. After incubating macrophages with HDL and P. gingivalis, Oil Red O staining was performed to examine foam cells. Results: P. gingivalis induced HDL oxidation. The HDL treated by P. gingivalis did not reduce lipid oxidation and may have enhanced the formation of MMP-9 and TNF-${\alpha}$. P. gingivalistreated macrophages exhibited more lipid aggregates than untreated macrophages. Conclusions: P. gingivalis induced HDL oxidation, impairing the atheroprotective function of HDL and making it proatherogenic by eliciting a proinflammatory response through its interaction with monocytes/macrophages.

Formation and Inhibition of Cholesterol Oxidation Products (COPs) in Foods; An Overview (식품 내 콜레스테롤 산화 생성물(COPs)의 생성 및 억제; 개요)

  • Joo-Shin Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1163-1175
    • /
    • 2023
  • Cholesterol is prone to oxidation, which results in the formation of cholesterol oxidation products (COPs). This occurs because it is a monounsaturated lipid with a double bond on C-5 position. Cholesterol in foods is mostly non-enzymatically oxidized by reactive oxygen species (ROS)-mediated auto-oxidative reaction. The COPs are found in many common foods of animal-origin and are formed during their manufacture process. The formation of COPs is mainly related to the temperature and the heating time the food is processed, storage condition, light exposure and level of activator present such as free radical. The level of COPs in processed foods could reach up to 1-10 % of the total cholesterol depending on the foods. The most predominant COPs in foods including meat, eggs, dairy products as well as other foods of animal origin were 7-ketocholesterol, 7 α-hydroxycholesterol (7α-OH), 7β-hydroxycholesterol (7β-OH), 5,6α-epoxycholesterol (5,6α-EP), 5,6β-epoxycholesterol (5,6β-EP), 25-hydoxycholesterol (25-OH), 20-hydroxycholesterol (20-OH) and cholestanetriol (triol). They are mainly formed non-enzymatically by cholesterol autoxidation. The COPs are known to be potentially more hazardous to human health than pure cholesterol. The procedure to block cholesterol oxidation in foods should be similar to that of lipid oxidation inhibition since both cholesterol and lipid oxidation go through the same free radical mechanism. The formation of COPs in foods can be stopped by decreasing heating time and temperature, controlling storage condition as well as adding antioxidants into food products. This review aims to present, discuss and respond to articles and studies published on the topics of the formation and inhibition of COPs in foods and key factors that might affect cholesterol oxidation. This review may be used as a basic guide to control the formation of COPs in the food industry.