• Title/Summary/Keyword: lipid metabolites

Search Result 130, Processing Time 0.026 seconds

Functional Characteristics of Soybean Oligosaccharide (콩 함유 올리고당의 기능적 특성)

  • 정명근;이재철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.58-64
    • /
    • 2003
  • To enjoy a healthy life, it is important to have a well-balanced diet. However, in today's society, there is an increase in the consumption of preprocessed foods and frequency of eating out. Also the western diet, which is becoming move popular worldwide, contains relatively high levels of protein and fat, and a low amount of fiber, Furthermore, the increased availability of favorite foods has created a condition were the individual diet is less variable. With these conditions, it is difficult to maintain a diet that is nutritionally balanced. With these unbalanced diets, which are difficult to change, there has been an increase in adult disease and health problems, such as colon and breast cancer, It is speculated that metabolites for carcinogens are produced from diet components and that intestinal bacteria contribute to the production of these metabolites. Therefore, it is necessary to evaluate the relationships between health, diet, and intestinal microflora. Soybean oligosaccharide is composed of water-soluble saccharides that have been extracted from soybean whey, a by-product from the production of soy protein. This is mainly a mixture of mono-, di-, tri-, and tetrasac-charides, with the principle components being the oligosaccharide raffinose and stachyose. When consumed by humans, the oligosaccharides cannot be digested in the human duodenal and small intestinal mucosa, and these are selectively utilized by beneficial bifidobacteria in intestines. The results of acute and subacute toxicity tests, soy-bean oligosaccharides were nonpoisonous. Soybean oligosaccharides promote the growth of indigenous bifido-bacteria in the colon which by their antagonistic effects, suppress the activity of putrefactive bacteria. Also, they reduce toxic metabolites, detrimental enzymes and plasma lipid, and increase in the frequency of bowel evacuation and fecal quantities. Consequently, soybean oligosaccharides as functional foods components have potential roles in the prevention and medical treatment of chronic adult diseases. The study of processing property and physiological function of soybean oligosacchavides and development of high oligosaccharide variety allow the creation of new and exciting foodstuffs that aye functional healthy.

EFFECTS OF INHIBITORY DRUGS ON THE ARACHIDONIC ACID METABOLISM OF PERIODONTAL TISSUE (치은 Arachidonic acid 대사산물의 억제약물에 관한 실험적 연구)

  • Han, Se-Hee;Oh, Kwi-Ok;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.243-259
    • /
    • 1993
  • The bone resorbing activity of $PGE_2$ and elevated level of prostaglandins(PGs) and thromboxanes (TXs) in inflamed gingiva which are cyclooxygenase(C) metabolites have been well documented. Nonsteroidal anti-inflammatory drugs(NSAIDs) have been known to suppress gingival inflammation and bone resorption through the specific inhibitory action on the C pathway thereby decrease of various C metabolites. Recent studies provide unequivocal results that gingival tissue metabolizes arachidonic acid(AA) mainly through lipoxygenase(L) pathway. And the results of our previous experiments suggest that indomethacin may have inhibitory action on L as well as C. Thus we started this study to show the influences of several C inhibitors on the L activity at therapeutic and toxic dosage. Periodontal tissue samples were obtained from patients with advanced periodontitis and incubated with $^{14}C-AA(0.2{\mu}Ci)$ and various enzyme inhibitors. The tissue lipid extracts were separated by means of thin layer chromatography(TLC) and analyzed by means of autoradiography and TLC analyzer. Our results showed that aspirin inhibited C more selectively than L, however at higher concentration it also decreased HETEs production significantly. Indomethacin showed dose-dependent inhibition of L as well as C and all of the L metabolites were decreased to the same degree by high concentration of indomethacin. AA-861, which is an experimental tool of selective L inhibitor, showed inhibition of HETEs production but no effect on the production of $TXB_2$, PGs and $LTB_4$. Various propionic acid derivatives NSAIDs(ibuprofen, flurbiprofen, naproxen) showed the same patterns of effect on AA metabolism each other that was profound inhibition of PGs production, to the less degree HETEs and $TXB_2$ production, and of no effect on the $LTB_4$ production.

  • PDF

Effect of Chromium Picolinate on Growth Performance, Carcass Characteristics, Serum Metabolites and Metabolism of Lipid in Pigs

  • Xi, Gang;Xu, Zirong;Wu, Si-hung;Chen, Shijiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.258-262
    • /
    • 2001
  • The study was conducted to evaluate the effects of chromium picolinate (CrP) on growth, carcass characteristics and serum metabolites in growing-finishing pigs. A total of 96 Landrace$\times$Yorkshire$\times$Duroc hybrid pigs, initial live weight about $38.12{\pm}00kg$, were randomly assigned to 2 groups (16 pigs per pen, 3 pens per group), each group had 48 pigs with an equal number of barrows and gilts. The pigs were fed the diet with or without $200{\mu}g/kg$ Cr from CrP. The results indicated that the addition of $200{\mu}g/kg$ CrP increased ADG by 3.58% and decreased feed conversion rate (FCR) by 3.00% compared to the control group. Pigs fed CrP had 7.58% (p<0.05) higher carcass lean percentage, 15.55% (p<0.05) larger longissimus muscle area (LMA) and 10.90% (p<0.05) lower back fat thickness, 15.17% (p<0.05) lower carcass fat percentage. In addition, the IGF-I level in serum was elevated by 79.20% (p<0.05), the Insulin and cortisol level decreased by 27.35% (p<0.05) and 34.58% (p<0.05) respectively with supplementation of CrP. Analysis of subcutaneous fat (10th rib) showed that the activity of hormone sensitive lipase (HSL) increased by 79.58% (p<0.05) and the activities of isocitrate dehydrogenase (ISD) and malate dehydrogenase (MDH) decreased significantly by 15.06% (p<0.05) and 54.53% (p<0.05) respectively in the $200{\mu}g/kg$ CrP group. The concentration of RNA, RNA/DNA in LMA increased by 31.89% (p<0.05) and 5.41% (p<0.05) respectively with the addition of CrP. These results suggest that CrP reduced fat deposits by decreasing lipogenic enzyme activities and increasing HSL activity and may have promoted muscle anabolic metabolism through elevated IGF-I levels.

Spectroscopic Imaging at 1.0Tesla MR Unit (1.0Tesla 자기공명 영상장치에서의 분광영상기법에 관한 연구)

  • Yi, Y.;Ryu, T.H.;Oh, C.H.;Ahn, C.B.;Lee, H.K.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.517-527
    • /
    • 1997
  • Magnetic Resonance Spectroscopic Imaging is a methodology combining the imaging and spectroscopy. It can provide the spectrum of each areas of image so that one can easily compare the spectrum of one position to another position of the image. In this study, we developed pulse sequence or the spectroscopic imaging method, RF wave forms or the saturation of water signal, computer simulations to validate our method, and confirmed the methodology with phantom experiment. Then we applied the spectroscopic method to human subject and identified a few important metabolites in in vivo. To develope a water saturating RF waveform, we used Shinnar-Le-Roux algorithm and obtained maximum phase RF waveform. With this RF pulse, it could suppress the water signal to 1:1000. The magnet is shimmed to under 1.0ppm with auto-shimming technique. The saturation bandwidth is 80Hz(2ppm). The water and fat seperation is 3.3ppm(about 140Hz at 1 Tesla magnet), the bandwidth is enough to resolve the difference. But we are more concerned about the narrow window in between the two peaks, in which the small quantity of metabolites reside. We performed the computer simulation and phantom experiments in 8*8 matrix form and showed good agreement in the image and spectrum. Finally we applied spectroscopic imaging to the brain of human subject. Only the lipid signal was shown in the periphery region which agrees with the at distribution in human head surface area. The spectrum inside the brain shows the important metabolites such as NAA, Cr/PCr, Choline. We here have shown the spectroscopic imaging which is normally done above 1.5 Tesla machine can be performed in the 1 Tesla Magnetic Resonance Imaging Unit.

  • PDF

Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

  • Shin, Kyong-Oh;Park, Nam-Young;Seo, Cho-Hee;Hong, Seon-Pyo;Oh, Ki-Wan;Hong, Jin-Tae;Han, Sang-Kil;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.470-476
    • /
    • 2012
  • Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol ($100{\mu}M$) for 24 hr induced cell death and cell cycle arrest in gastric cancer cells. Exposure to the combination of resveratrol and dimethylsphingosine (DMS) increased cytotoxicity, demonstrating that sphingolipid metabolites intensify resveratrol activity. Specifically, DHCer accumulated in a resveratrol concentration-dependent manner in SNU-1 and HT-29 cells, but not in SNU-668 cells. LC-MS/MS analysis showed that specific DHCer species containing C24:0, C16:0, C24:1, and C22:0 fatty acids chain were increased by up to 30-fold by resveratrol, indicating that resveratrol may partially inhibit DHCer desaturase. Indeed, resveratrol mildly inhibited DHCer desaturase activity compared to the specific inhibitor GT-11 or to retinamide (4-HPR); however, in SNU-1 cells resveratrol alone exhibited a typical cell cycle arrest pattern, which GT-11 did not alter, indicating that inhibition of DHCer desaturase is not essential to the cytotoxicity induced by the combination of resveratrol and sphingolipid metabolites. Resveratrol-induced p53 expression strongly correlated with the enhancement of cytotoxicity observed upon combination of resveratrol with DMS or 4-HPR. Taken together, these results show that DHCer accumulation is a novel lipid biomarker of resveratrol-induced cytotoxicity in human gastric cancer cells.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

A Novel Draft Genome-Scale Reconstruction Model of Isochrysis sp: Exploring Metabolic Pathways for Sustainable Aquaculture Innovations

  • Abhishek Sengupta;Tushar Gupta;Aman Chakraborty;Sudeepti Kulshrestha;Ritu Redhu;Raya Bhattacharjya;Archana Tiwari;Priyanka Narad
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.141-151
    • /
    • 2024
  • Isochrysis sp. is a sea microalga that has become a species of interest because of the extreme lipid content and rapid growth rate of this organism indicating its potential for efficient biofuel production. Using genome sequencing/genome-scale modeling for the prediction of Isochrysis sp. metabolic utilities there is high scope for the identification of essential pathways for the extraction of byproducts of interest at a higher rate. In our work, we design and present iIsochr964, a genome-scale metabolic model of Isochrysis sp. including 4315 reactions, 934 genes, and 1879 metabolites, which are distributed among fourteen compartments. For model validation, experimental culture, and isolation of Isochrysis sp. were performed and biomass values were used for validation of the genome-scale model. OptFlux was instrumental in uncovering several novel metabolites that influence the organism's metabolism by increasing the flux of interacting metabolites, such as Malonyl-CoA, EPA, Protein and others. iIsochr964 provides a compelling resource of metabolic understanding to revolutionize its industrial applications, thereby fostering sustainable development and allowing estimations and simulations of the organism metabolism under varying physiological, chemical, and genetic conditions. It is also useful in principle to provide a systemic view of Isochrysis sp. metabolism, efficiently guiding research and granting context to omics data.

Effects of graded levels of cupric citrate on growth performance, antioxidant status, serum lipid metabolites and immunity, and tissue residues of trace elements in weaned pigs

  • Peng, Chu Cai;Yan, Jia You;Dong, Bin;Zhu, Lin;Tian, Yao Yao;Gong, Li Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.538-545
    • /
    • 2017
  • Objective: The goal of this study was to investigate the effects of cupric citrate (CuCit) on growth performance, antioxidant indices, serum lipid metabolites, serum immune indices, and tissue residues of copper (Cu), zinc, and iron in weaned pigs. Methods: A total of 180 weaned pigs ($Duroc{\times}Landrace{\times}Large$ White) with an average body weight of $8.98{\pm}1.21kg$ were randomly assigned to a corn-soybean meal control ration, or 4 similar rations with 30, 60, 120, or 240 mg/kg Cu as CuCit. All diets contained 10 mg/kg Cu as cupric sulfate from the vitamin-mineral premix. The experiment was divided into two phases: 0 to 14 d (phase 1) and 15 to 28 d (phase 2). Results: Average daily gain (ADG; linearly, p<0.01) and average daily feed intake (ADFI; linearly and quadratically, p<0.05) were affected by an increase in CuCit during phase 2. Overall period, ADG (p<0.05) and ADFI (p<0.01) were linearly increased with increasing dietary levels of CuCit. Serum malondialdehyde concentrations (p<0.05) and glutathione peroxidase activity (p<0.01) linearly decreased and increased respectively with an increase in CuCit. Serum levels of Cu-Zn superoxide dismutase were linearly affected with an increase in CuCit (p<0.01). Hepatic malondialdehyde levels decreased with an increase in CuCit (linearly and quadratically, p<0.01). Serum total cholesterol concentrations were quadratically affected (p<0.05) and decreased in pigs fed Cu as CuCit at 60 and 120 mg/kg and increased in pigs fed 240 mg/kg Cu as CuCit. Serum high-density lipoprotein concentrations were linearly affected with an increase in CuCit (p<0.01). Serum $IL-1{\beta}$ levels were quadratically affected (p<0.05) by dietary treatment. Compared with other treatments, 240 mg/kg Cu from CuCit quadratically increased hepatic (p<0.01) and renal (p<0.05) Cu concentrations, and quadratically decreased hepatic and renal iron concentrations (p<0.05). Conclusion: Cu administered in the form of CuCit at a dosage range of 30 to 60 mg/kg, effectively enhanced the growth performance and antioxidant status of weaned pigs.

Marine-derived Ca-Mg complex influences lipid and glucose metabolism, serum metabolites, colostrum profile, and stress hormone in sows over four-parity periods

  • Sungbo Cho;Santi Devi Upadhaya;Woo Jeong Seok;Seyoung Mun;Haeun Lee;Rudolf H. van der Veen;Kyudong Han;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1308-1322
    • /
    • 2023
  • Minerals is required small amounts among various nutrients, but it has a significant impact on sow longevity and reproduction performance. This study was carried out to see the beneficial effects of marine-derived Ca-Mg complex on the reproductive performance of sows during four-parity periods. Seventy-two gilts ([Yorkshire × Landrace] × Duroc), with an average body weight of 181 kg, were randomly allocated to three groups; CON (basal diet), 0.3LC (CON - MgO - 0.3% limestone + 0.4% Ca-Mg complex), and 0.7LC (CON - MgO - 0.7% limestone + 0.4% Ca-Mg complex). During parity 3 and 4, the expression level of SCD gene was lower in the umbilical cord of piglets born to 0.3LC and 0.7LC sows compared with the CON sows. During parity 2, 3 and 4, SLC2A2 and FABP4 gene expressions were higher in the umbilical cord of piglets born to 0.7LC sows and the placenta of sows from 0.3LC groups, respectively. Ca-Mg complex increased (p < 0.05) Ca and Mg concentrations in sows and their piglets' serum as well as in colostrum regardless of parities. The serum vitamin D concentration was higher (p < 0.05) in their first parity, whereas serum prolactin and estrogen concentrations were higher (p < 0.05) during the fourth and third parity, respectively. The growth hormone concentrations were higher (p < 0.05) in the piglets born to sows during the first and second parity. The fat and immunoglobulin A (IgA) concentrations in colostrum were higher (p < 0.05) during the third and fourth parity, respectively. A reduction (p < 0.05) in salivary cortisol, epinephrine, and norepinephrine concentrations was observed in 0.3LC and 0.7LC sow groups compared with CON after farrowing regardless of parity, however before farrowing, a reduction in norepinephrine was observed. Before farrowing, the epinephrine and norepinephrine concentrations were higher (p < 0.05) during the first and second parity. After farrowing, the concentration of these hormones was higher during the second parity. Taken together, sows' parity and dietary Ca-Mg complex supplementation influenced serum metabolites, colostrum nutrients, stress hormones as well as the gene expressions related to lipid and glucose metabolism.