• Title/Summary/Keyword: linking system

Search Result 812, Processing Time 0.023 seconds

A Study on the Identifying OECMs in Korea for Achieving the Kunming-Montreal Global Biodiversity Framework - Focusing on the Concept and Experts' Perception - (쿤밍-몬트리올 글로벌 생물다양성 보전목표 성취를 위한 우리나라 OECM 발굴방향 연구 - 개념 고찰 및 전문가 인식을 중심으로 -)

  • Hag-Young Heo;Sun-Joo Park
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.302-314
    • /
    • 2023
  • This study aims to explore the direction for Korea's effective response to Target 3 (30by30), which can be said to be the core of the Kunming-Montreal Global Biodiversity Framework (K-M GBF) of the Convention on Biological Diversity (CBD), to find the direction of systematic OECM (Other Effective area-based Conservation Measures) discovery at the national level through a survey of global conceptual review and expert perception of OECM. This study examined ① the use of Korean terms related to OECM, ② derivation of determining criteria reflecting global standards, ③ deriving types of potential OECM candidates in Korea, and ④ considerations for OECM identification and reporting to explore the direction for identifying systematic, national-level OECM that complies with global standards and reflects the Korean context. First, there was consensus for using Korean terminology that reflects the concept of OECM rather than simple translations, and it was determined that "nature coexistence area" was the most preferred term (12 people) and had the same context as CBD 2050 Vision of "a world of living in harmony with nature." This study suggests utilizing four criteria (1. No protected areas, 2. Geographic boundaries, 3. Governance/management, and 4. Biodiversity value) that reflect OECM's core characteristics in the first-stage selection process, carrying out the consensus-building process (stage 2) with the relevant agencies, and adding two criteria (3-1 Effectiveness and sustainability of governance and management and 4-1 Long-term conservation) and performing the in-depth diagnosis in stage 3 (full assessment for reporting). The 28 types examined in this study were generally compatible with OECMs (4.45-6.21/7 points, mean 5.24). In particular, the "Conservation Properties (6.21 points)" and "Conservation Agreements (6.07 points)", which are controlled by National Nature Trust, are shown to be the most in line with the OECM concept. They were followed by "Buffer zone of World Natural Heritage (5.77 points)", "Temple Forest (5.73 points)", "Green-belt (Restricted development zones, 5.63 points)", "DMZ (5.60 points)", and "Buffer zone of biosphere reserve (5.50 point)" to have high potential. In the case of "Uninhabited Islands under Absolute Conservation", the response that they conformed to the protected areas (5.83/7 points) was higher than the OECM compatibility (5.52/7 points), it is determined that in the future, it would be preferable to promote the listing of absolute unprotected islands in the Korea Database on Protected Areas (KDPA) along with their surrounding waters (1 km). Based on the results of a global OECM standard review and expert perception survey, 10 items were suggested as considerations when identifying OECM in the Korean context. In the future, continuous research is needed to identify the potential OECMs through site-level assessment regarding these considerations and establish an effective in-situ conservation system at the national level by linking existing protected area systems and identified OECMs.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.