• Title/Summary/Keyword: lining system

Search Result 242, Processing Time 0.027 seconds

Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber (유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구)

  • Ji, Hyon Wook;Koo, Dan Daehyun;Yoo, Sung Soo;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

A Study on Fuzzy Logic Method for the Assessment of Tunnel Concrete Lining (터널 콘크리트 라이닝의 상태평가를 위한 퍼지추론기법 연구)

  • 이성원;조만섭;이광호;이석원;배규진;안영기
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.337-349
    • /
    • 1999
  • There are many difficulties to the engineers in the assessment of tunnel safety. Consequently, objective assessment of concrete lining is hard even by the experts of tunnel assessment. Of several difficulties in the assessment of tunnel safety, in this study, tunnel concrete lining was focussed iud evaluated quantitatively and objectively using the Fuzzy theory which it generally considered to be appropriate for the assessment, control and judgment. T-FLAS based on fuzzy theory was developed in this study for the quantitative and objective assessment of the concrete lining in tunnels. Based on the application of T-FLAS on the evaluated field data, it was shown that the assessment system using fuzzy theory(T-FLAS) can be the effective and objective method for the assessment of concrete lining.

  • PDF

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

Analysis of Temperature Change of Tunnel Lining with Heating Element (발열체가 적용된 터널 라이닝 내부 및 배면의 온도변화 분석)

  • Jin, Hyunwoo;Kim, Teasik;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2017
  • The damage of the tunnel lining on the cold regions can be represented by cracks and leaks caused by freezing of ground water. However, domestically, the relevant construction guidelines are not provided so far. Thus, in this research, the mechanical behavior and thermal conductivity of designated tunnel area are measured using instrumentation system installed in the lining concrete inside tunnels in order to analysis their behavior with regard to temperature variations. Previous research mainly focused on the effect of temperature on the tunnel lining based on the air and initial ground temperature at urban regions. Thus, this study analyzes effects of air temperature and initial ground temperature of designated tunnel area at the cold regions. The temperature of the groundwater at the backfill of the tunnel lining are analyzed to evaluate the heating element. Numerical analyses are performed to evaluate the heating element with regard to the various initial ground temperatures.

Study on the optimal construction of a concrete lining in a weathered rock (풍화암지반에 시공되는 콘크리트라이닝의 적정시공에 관한 연구)

  • Kim, Hyeongkeon;Lee, Chul;Lee, Sun-Woo;Park, Jun-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.33-47
    • /
    • 2015
  • Concrete lining in tunnel construction is used as secondary support for downward loads when primary support decays. The use of concrete lining varies greatly depending on the intentions of engineer and/or client. An engineer uses much smaller deformation modulus which determines the concrete lining thickness than of a pattern 3, when supporting patterns 4 and 5 are used in a weathered rock and soil. Considering these conditions, this study intends to suggest optimal construction procedures through a back analysis using a computer program(MIDAS-civil). Cases of Seoul Subway System line${\bigcirc}{\bigcirc}$ zone${\bigcirc}{\bigcirc}$ were selected to be examined for this study. The results show that it is possible to reduce the thickness of concrete lining. When results from this study were applied to Seoul Metropolitan subway construction projects, it is expected to bring economic benefits.

Analysis and cause of defects in reinforced cement concrete lining on NATM tunnel based on the Precise Inspection for Safety and Diagnosis - Part I (정밀안전진단 결과를 활용한 NATM (철근)의 라이닝 결함 종류별 발생원인 및 분석 - Part I)

  • Choo, Jinho;Lee, Inmo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.1-29
    • /
    • 2019
  • Related to the previous paper on the typical crack pattern of tunnel lining with NATM, the characteristic defects in reinforced cement concrete lining of NATM tunnel have analyzed with the precise inspection with safety and diagnosis (PISD) by KISTEC. Depending on the reinforcing materials, steel rebar, steel fiber, and glass fiber have been implemented to reinforcing lining in various NATM tunnel constructions. Reinforcing lining with rebar are prevailed on NATM tunnel to countermeasure the weak geological circumstances, to pursuit the economical tunnel sections, and to resist the risk of tunnel deterioration. By the special act on the safety control of public facilities, the reinforced NATM tunnels for more than 1 km length are scrutinized closely to characterize defects; crack, reinforcement exposure, and lack of lining. Crack resistance by reinforcing is shown in comparison with the normalized crack to the length of tunnel. Typical exposed reinforcements in lining have exemplified with various sections. The lack of lining due to the mal-construction, spalling, fire, earthquake and leaching has been analyzed. The cause and mechanism with the field inspections and other studies has also been verified. Detailed cases are selected by the above concerns as well as the basic information from FMS (Facilities Management System). Likewise the previous paper, this study provides specialized defects in reinforced lining of NATM and it can be widely used in spreading the essential technics and reporting skills. Furthermore, it would be advised and amended for the detail guideline of Safety Diagnosis and PISD (tunnel).

A study on hydraulic behaviour and leakage control of segment linings using the numerical method (수치해석을 이용한 세그먼트라이닝의 수리거동과 누수제어 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Pam, Dong-In;Chae, Sung-Elm;Choi, Kyu-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.131-140
    • /
    • 2009
  • It has been repeatedly reported that a drainage system of a drained tunnel is deteriorated. And consequently the water pressure on the lining increases with time. However, little research on the watertight tunnel was found in the literatures. According to field measurements, leakage of the undrained tunnel has increased with time, which is completely opposite to the behavior of the drained tunnel. It is evident that the hydraulic deterioration of the tunnel lining changes the water pressure on the lining and the amount of leakage, thus the design coneept in terms of groundwater is not maintained tightly throughout the life time of the tunnel. The Segment lining is generally constructed as watertight. However, it is frequently reported that the leakage in the segment tunnel increases with time. It is also reported that the leakage is generally concentrated at the joints of the segments. In this study structural and hydraulic interaetion of the segment lining due to the hydraulic deterioration of the segments and the joints is investigated using the numerical modeling method. An electric utility tunnel below groundwater table is considered for the analyses. The effects of hydraulic deterioration of the segment lining are identified in terms of ground loading, water pressure and lining behavior. A remedial grouting measure for leakage is also numerically simulated, and its appropriateness is evaluated.

An experimental study on the effect of deterioration of drainage system on tunnel structures (배수시스템 수리기능저하가 터널구조물에 미치는 영향에 대한 실험적 연구)

  • Kwon, Oh-Yeob;Shin, Jong-Ho;Yang, Yu-Hong;Joo, Eun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.970-979
    • /
    • 2006
  • Construction of underground structure requires higher standard of planning and design specifications than in surface construction. However, high construction cost and difficult working environment limit design level and construction quality. One of the most sensitive factors to be considered are infiltration and external pore-water pressures. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. In this paper, the development of pore-water pressure and its potential effect on the linings are investigated using physical model tests. A simple physical equipment model with well-defined hydraulic boundary conditions was devised. The deterioration procedure was simulated by controlling both the permeability of filters and flowrate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanim of pore-water pressure development on the tunnel lining which is the effect of deterioration of drainage system. The laboratory tests were simulated using coupled numerical method, and shown that the deterioration mechanism can be reproduced using coupled numerical modelling method.

  • PDF

A Study on the Application of Convergence Measurement System to Inverse Calculation of Tunnel Lining Sectional Forces (터널 라이닝 단면력 역산을 위한 유지관리 내공변위계측시스템 적용 연구)

  • 이대혁;김기선;한일영;박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.146-155
    • /
    • 2001
  • An inverse calculation method to obtain sectional forces, axial force and flexural moment of a tunnel concrete lining was developed by utilizing convergence measurements acquired at the maintenance stage. To monitor the behavior of the lining, DOCS system was applied to a subway tunnel section. The method was proved to be effective, yielding the same results as measured forces of buried instruments. Many effects such as vibration of sensors, vibration due to test train operation, the variation of temperature and high voltage were checked and a new management scheme for tunnel maintenance was proposed.

  • PDF

A Basic Study for Single Shell Support System of Railway Tunnel (철도 터널의 싱글쉘 지보시스템 적용에 관한 기초 연구)

  • Jung, Daeho;Jeong, Cahnmook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • In this study, it can be shortened tunnel construction work period by introducing a single-shell tunnel does not placing the secondary concrete lining, a global research trend, reduction of the cost of the lining placement and number of benefits that can ensure the safety of long-term tunnel with a single shell it was to study the tunnel method. First, we analyze the design and construction practices relating to delete lining of the domestic design and construction practices and a comprehensive analysis of the stability study found a rock in good condition interval (1~3 grades), we propose that the lining uninstalled. In the case of domestic changes on the ground floor is very heavy underfoot conditions many so tunneling method by single shell as ground conditions are good and one preferred the water points that apply in less soil, the soil health and poor sections (4~5 grades) reflecting with respect to the concrete lining that is expected reasonable.