• 제목/요약/키워드: lining system

검색결과 242건 처리시간 0.025초

TBM 세그먼트 라이닝 최적 설계 시스템 개발 (Development of optimized TBM segmental lining design system)

  • 우승주;정은목;유충식
    • 한국터널지하공간학회 논문집
    • /
    • 제18권1호
    • /
    • pp.13-30
    • /
    • 2016
  • 본 연구에서는 해저 터널의 특수성을 고려한 TBM 세그먼트 라이닝의 최적 설계 시스템을 개발하였다. 해저 터널은 일반적으로 일정 수압 하의 토사나 암반 등으로 구성된 해저 지반 내에 시공된다. 본 설계 시스템은 특정 해저 터널 단면에서의 지반 조건, 시공 조건 및 터널 조건을 고려하여 인공신경망 기반의 세그먼트 라이닝 부재력 예측 시스템을 구축하고, 시공성이 확보된 단면 DB를 구축하여 해저터널에서 최적 단면 설계가 가능하도록 구성하였다. 결과적으로 본 시스템은 해저 터널 설계에 사용되는 BIM과 연동되어 자동으로 설계가 가능하도록 하였다. 단면 검토 및 설계에 사용되는 세그먼트 라이닝 부재력 예측은 유한요소해석을 토대로 구축한 인공신경망을 통해 일반화한 후 BIM 시스템에 접목시켜 별도의 추가 해석이 필요없이 유사 단면의 해저 터널 설계에 적용이 가능하도록 하였다.

수치해석에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구 (On Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Numerical Analysis)

  • 이대혁;김재순;이희근;김성운
    • 터널과지하공간
    • /
    • 제8권2호
    • /
    • pp.146-156
    • /
    • 1998
  • Nemerical algorithms were developed to analyze the behavior of the double lining as well as ground mass separately or simultaneously. A lining interface element was especially developed, verified and applied to the study on the coupled interaction of shotcrete and the concrete lining. It could be known fro parameter studys on double lining support systems that as the contact surface between shotcrete and concrete lining was rougher, the more decreased bearing capacity against the cracking of the system. If the thickness of the shotcrete increased, the bearing capacity of the double lining also increased linearly with the thickness. If the thickness of the concrete lining increased, the bearing capacity of the double lining had the relationship of the characteristic S-shape of a sigmoid function with the thickness. When the thickness increased over a given value, it was not useful to increase more the thickness because bearing capacity had no remarkable change. It could be concluded that the behavior of the shotcrete and concrete lining was generally reversed before and after the ratio of horizontal to vertical earth preassure of 1.0 and 0.5 respectively. Therefore, we could guess that the movement which two shotcrete and concrete lining deflect toward each other around the crown caused a friction between two linings and thus this disadvantageous effect could contribute to reducing the bearing capacity against the cracking.

  • PDF

터널 라이닝의 비파괴 평가를 위한 전문가시스템 개발 (Development of an Expert System for Nondestructive Evaluation of Tunnel Lining)

  • 김문겸;허택녕;이재영;김도훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, an expert system is developed to evaluate a safety of tunnel structures. Using a dynamic finite element analysis module, this expert system predicts dynamic responses of a concrete lining surface which a transient force is applied on and estimates the condition between the concrete lining and surrounding ground. The evaluation parameter values of the module are multi-reflected wave frequency and amplitude of the dynamic responses. The multi-reflected wave frequency represents the depth of concrete lining, and the other parameter, the amplitude of the frequency, is utilized for detecting the internal flaws. A comparison of the dynamic responses between numerical and experimental model test verifies an effectiveness of this system. By this expert system, the safety of tunnel structures and the detection of internal flaws of concrete linings are estimated quantitatively.

  • PDF

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Cause Analysis for a Lining Damage in Sea Water System Piping Installed in a Korean Industrial Plant

  • Hwang, K.M.;Park, S.K.
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Many Korean industrial plants including nuclear and fossil power plants use seawater as the ultimate heat sink to cool the heat generated by various facilities. Owing to the high corrosivity of seawater, facilities and piping made of metal material in contact with seawater are coated or lined with polymeric materials to avoid direct contact with seawater. However, polymeric materials used as coating and lining have some level of permeability to water and are degraded over time. Korean industrial plants have also experienced a gradual increase in the frequency of damage to pipes in seawater systems due to prolonged operating periods. In the event of a cavitation-like phenomenon, coating or lining inside the piping is likely to be damaged faster than expected. In this paper, the cause of water leakage due to base metal damage caused by the failure of the polyester lining in seawater system piping was assessed and the experience with establishing countermeasures to prevent such damage was described.

구조-음향 모드 비연성에 의한 차량의 부밍 소음 저감 (Booming Noise Reduction of Passenger Cars by Mode Decoupling of Structural-Acoustic Systems)

  • 고강호;이장무
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.822-827
    • /
    • 1999
  • The reduction of booming noise level and improvement of sound quality in the vehicle interior have been major fields of vehicle NVH for many years. In order to reduce the booming noise this paper proposed a system variable, which takes account of mode shapes and natural frequencies of the structural-acoustic system, measurement points and excitation frequency. By simplifying the system variable, the major contributors of panels inculding roof, roof lining, wind shield glasses, doors and floor to booming noise at a specific frequency was experimentally found. Also the relationships between structural modes of roof lining, one of the major contributors, and acoustic modes of compartment cavity were investigated from the viewpoint fo structure-borne noise. In addition, the roof lining was modified structurally by applying marble sponge to the gap between roof and roof lining. Asthe result of structural modification, the booming noise was reduce at target frequency.

  • PDF

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

강섬유 보강 터널 라이닝 콘크리트의 성능 평가 (Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber)

  • 전찬기;김수만;이명수;이종은;전중규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

라이닝 시공특성을 고려한 대단면 4차로 터널 균열최소화 방안에 대한 연구 (A Study for Concrete Crack Minimize Methods in Large Section Tunnel Lining)

  • 추석연;이재성;고성일;김상환;나경웅;김태혁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.621-628
    • /
    • 2005
  • The concrete lining in tunnel performs structural and nonstructural functions. The concrete lining works as a structural member for released load and residual water pressure in NATM tunnel system. Also concrete lining used for finishing the tunnel surface. The initial crack of concrete lining is reported because of difficulties in construction process, which concrete is injected into 30$\sim$40cm narrow gap between lining form and tunnel surface through 500${\times}$600mm small injection holes in the form. In this paper, we research a reason of initial crack occurrence by the case study of 4 lane wide span tunnel, and propose an improved method for crack minimization in construction process. We verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF

운영 중 터널에 작용하는 간극수압 평가기법 (Evaluation of pore water pressure on the lining during tunnel operation)

  • 신종호;신용석;최규철
    • 한국터널지하공간학회 논문집
    • /
    • 제10권4호
    • /
    • pp.361-369
    • /
    • 2008
  • 지중터널은 대부분 지하수위 하부에 위치하므로 지하수 처리문제는 터널의 장기운영에 있어 매우 중요하다. 배수형터널의 경우 수리기능이 원활하면 라이닝에 수압이 작용하지 않으나 장기 운영으로 인해 배수시스템의 열화가 진행되면서 라이닝 배면에 설계 시 고려하지 않았던 간극수압이 작용하게 되는데, 이를 잔류수압이라 한다. 잔류수압은 피에조미터로 그 측정이 가능하나 이는 라이닝 및 배수시스템을 훼손할 염려가 있어 부적합하기 때문에 라이닝을 손상시키지 않으면서 작용수압을 평가할 수 있고, 운영 중 라이닝의 건전도 평가(health monitoring) 시 수압상태의 파악이 가능한 비파피 예측기법이 요구된다. 본 논문에서는 이론적 및 수치해석적 방법을 사용하여 운영 중 터널에 작용하는 간극구압(잔류수압) 예측기법을 제시하였으며, 본 해석방법을 이용하면 비파괴 방법으로 라이닝에 작용하는 간극수압의 파악이 가능하다. 제안된 방법은 이론적 예측기법과 수치해석 결과인 정규화 간극수압 분포곡선과를 병용함으로써 터널 운영단계에서의 잔류수압에 대한 안정성 검토에 유용하게 활용될 수 있다.

  • PDF