• Title/Summary/Keyword: linear static structural analysis

Search Result 253, Processing Time 0.024 seconds

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Static analysis of shear-deformable shells of revolution via G.D.Q. method

  • Artioli, Edoardo;Viola, Erasmo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.459-475
    • /
    • 2005
  • This paper deals with a novel application of the Generalized Differential Quadrature (G.D.Q.) method to the linear elastic static analysis of isotropic rotational shells. The governing equations of equilibrium, in terms of stress resultants and couples, are those from Reissner-Mindlin shear deformation shell theory. These equations, written in terms of internal-resultants circular harmonic amplitudes, are first put into generalized displacements form, by use of the strain-displacements relationships and the constitutive equations. The resulting systems are solved by means of the G.D.Q. technique with favourable precision, leading to accurate stress patterns.

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

Chord rotation demand for effective catenary action of RC beams under gravitational loadings

  • Tsai, Meng-Hao
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.327-345
    • /
    • 2016
  • Many experimental and analytical studies have been conducted with beam-column subassemblages composed of a two-span beam to investigate the progressive collapse resistance of RC frames. Most study results reveal a strength-decreased transition phase in the nonlinear static load-deflection curve, which may induce dynamic snap-through response and increase the chord rotation demand for effective catenary action (ECA). In this study, the nonlinear static response is idealized as a piecewise linear curve and analytical pseudo-static response is derived for each linearized region to investigate the rotation demands for the ECA of the two-span RC beams. With analytical parameters determined from several published test results, numerical analysis results indicate that the rotation demand of 0.20 rad recommended in the design guidelines does not always guarantee the ECA. A higher rotation demand may be induced for the two-span beams designed with smaller span-to-depth ratios and it is better to use their peak arch resistance (PAR) as the collapse strength. A tensile reinforcement ratio not greater than 1.0% and a span-to-depth ratio not less than 7.0 are suggested for the two-span RC beams bridging the removed column if the ECA is expected for the collapse resistance. Also, complementary pseudo-static analysis is advised to verify the ECA under realistic dynamic column loss even though the static PAR is recovered in the nonlinear static response. A practical empirical formula is provided to estimate an approximate rotation demand for the ECA.

Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam (박벽 곡선보의 엄밀한 탄성요소강도행렬)

  • 김남일;윤희택;이병주;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF

A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository (지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석)

  • 강신욱;권영주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

Parametric Analysis and Design Engine for Tall Building Structures

  • Ho, Goman;Liu, Peng;Liu, Michael
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 2012
  • With the rise in CPU power and the generalization and popularity of computers, engineering practice also changed from hand calculations to 3D computer models, from elastic linear analysis to 3D nonlinear static analysis and 3D nonlinear transient dynamic analysis. Thanks to holistic design approach and current trends in freeform and contemporary architecture, BIM concept is no longer a dream but also a reality. BIM is not just providing a media for better co-ordination but also to shorten the round-the-clock time in updating models to match with other professional disciplines. With the parametric modeling tools, structural information is also linked with BIM system and quickly produces analysis and design results from checking to fabrication. This paper presents a new framework which not just linked the BIM system by means of parametric mean but also create and produce connection FE model and fabrication drawings etc. This framework will facilitate structural engineers to produce well co-ordinate, optimized and safe structures.

A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

  • Vinyas., M;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.465-485
    • /
    • 2017
  • In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.

HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.535-550
    • /
    • 2005
  • The non-linear static and dynamic response of doubly curved thin isotropic shells has been studied for the step and sinusoidal loadings. Dynamic analogues Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by the numerical examples. Numerical examples demonstrate the satisfactory accuracy, efficiency and versatility of the presented approach.

Non-linear performance analysis of existing and concentric braced steel structures

  • Erdem, R. Tugrul
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • Since there are several places located in active seismic zones in the world, serious damages and losses have happened due to major scaled earthquakes. Especially, structures having different irregularities have been severely damaged or collapsed during these seismic events. Behavior of existing structures under several loading conditions is not completely determined due to some uncertainties. This situation reveals the importance of design and analysis of structures under seismic effects. Several non-linear static procedures have been developed in recent years. Determination of the seismic safety of the existing structures and strengthening techniques are significant civil engineering problems Non-linear methods are defined in codes to determine the performance levels of structures more accurately. However, displacement based ones give more realistic results. These methods provide more reliable evaluation possibilities for existing structures with developing computer technology. In this study, non-linear performance analysis of existing and strengthened steel structures by X shaped bracing members with 3, 5 and 7 stories which have soft story irregularity is performed according to FEMA-356 and Turkish Earthquake Code-2007. Damage ratios of the structural members and global performance levels are determined as well as modal properties and story drift ratios after non-linear finite elements analysis for each structure.