• Title/Summary/Keyword: linear slip

Search Result 211, Processing Time 0.028 seconds

Parameter Estimation of Three-Phase Induction Motor by Using Genetic Algorithm

  • Jangjit, Seesak;Laohachai, Panthep
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.360-364
    • /
    • 2009
  • This paper suggests the techniques in determining the values of the steady-state equivalent circuit parameters of a three-phase induction machine using genetic algorithm. The parameter estimation procedure is based on the steady-state phase current versus slip and input power versus slip characteristics. The propose estimation algorithm is of non-linear kind based on selection in genetic algorithm. The machine parameters are obtained as the solution of a minimization of objective function by genetic algorithm. Simulation shows good performance of the propose procedures.

Non-linear Structural Analysis of Composite Beams Considering the Bond-slip Effect (부착슬립 효과를 고려한 합성보의 비선형 해석)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.25-26
    • /
    • 2009
  • This paper deals with an introduction of a numerical model which is based on finite element concept to simulate bond-slip behavior in composite beams. Correlation studies between numerical results and experimental values were conducted to verify the model.

  • PDF

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

Safety assessment of caisson transport on a floating dock by frequency- and time-domain calculations

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • When caissons are mounted on a floating transportation barge and towed by a tug boat in waves, motion of the floating dock creates inertia and gravity-induced slip forces on the caisson. If its magnitude exceeds the corresponding friction force between the two surfaces, a slip may occur, which can lead to an unwanted accident. In oblique waves, both pitch and roll motions occur simultaneously and their coupling effects for slip and friction forces become more complicated. With the presence of strong winds, the slip force can appreciably be increased to make the situation worse. In this regard, the safety of the transportation process of a caisson mounted on a floating dock for various wind-wave conditions is investigated. The analysis is done by both frequency-domain approach and time-domain approach, and their differences as well as pros and cons are discussed. It is seen that the time-domain approach is more direct and accurate and can include nonlinear contributions as well as viscous effects, which are typically neglected in the linear frequency-domain approach.

Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars

  • Caprili, Silvia;Mattei, Francesca;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-201
    • /
    • 2018
  • The paper describes a modified cyclic bar model including bond-slip phenomena between steel reinforcing bars and surrounding concrete. The model is focused on plain bar and is useful, for its simplicity, for the seismic analyses of RC structures with plain bars and insufficient constructive details, such as in the case of '60s -'70s Mediterranean buildings. The model is based on an imposed exponential displacements field along the bar including both steel deformation and slip; through the adoption of equilibrium and compatibility equations a stress-slip law can be deducted and simply applied, with opportune operations, to RC numerical models. This study aims to update and complete the original monotonic model published by the authors, solving some numerical inconsistencies and, mostly, introducing the cyclic formulation. The first aim is achieved replacing the imposed linear displacement field along the bar with an exponential too, while the cyclic behaviour is described through a formulation based on the results of parametric analyses concerning a large range of steel and concrete properties and geometric configurations. Validations of the proposed model with experimental results available in the current literature confirm its accuracy and the reduced computational burden, highlighting its suitability in performing nonlinear analyses of RC structures.

Effects of the Addition of Alumina on the Mechanical Properties of Cast Zirconia Sintered Body (주입성형한 지르코니아 소결체의 기계적 성질에 미치는 알루미나 첨가의 영향)

  • Lee, Dong-Yoon;Jo, Jun-Ho;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Purpose: Zirconia blocks for all ceramic dentures are divided into two groups. One is pre-heated block and the other is binder added block. In this study, the possibility of recycling the remained parts of binder added block after CAD/CAM machining with slip casting process was investigated. Methods: Owing to the binder added block contain large amount of organic matter, Binder burn-out was must be carried out before ball milling for preparing the casting slip. Binder burn-out was accomplished at $600^{\circ}C$ for 10 hours. Ball milling was performed with 5mm zirconia ball and 60mm polyethylene bottle. From 0% to 5% at 1% intervals of alumina was added to zirconia powder for preparing slip. Solid casting was achieved with plaster mold. Cast bodies were dried and sintered at $1,500^{\circ}C$ for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM, EDS and XRD analysis were executed. Results: Optimum slips for casting was prepared with 300g ball, 100g powder, and 180g distilled water. Cast body without alumina showed 26% of linear shrinkage, 6.07 of apparent density, and 470MPa of three point bend strength. On the other hand, as received zirconia block, which was sintered at the same conditions, showed 23% of linear shrinkage, 6.10 of apparent density, and 680MPa of three point bend strength. When 3% of alumina was added to zirconia, sintered body showed 23% of linear shrinkage, 6.10 of apparent density, and 780MPa of three point bend strength. SEM photomicrographs and EDS analysis showed alumina particles uniformly dispersed in zirconia matrix, and XRD analysis showed no phase transformation of tetragonal zirconia particles was occurred when alumina was added. Conclusion: According to the all of this experimental results, 3% of alumina added cast zirconia body showed excellent mechanical properties more than as received binder containing zirconia block.

Decoupling Control of Tractive and Vertical Force of Linear Induction Motor (선형 유도전동기의 추진력 및 수직력 제어 방식)

  • Oh, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.289-291
    • /
    • 1996
  • Linear induction motor(LIM) is widely used to drive magnetic levitation train. To drive LIM, different control method compared with conventional rotary type machine is needed. Since vertical force is generated inherently and it effects on the levitation system, vertical force should be kept constant for stable levitation. To keep vertical force constant, slip frequency should be kept constant. Once slip frequency is kept constant, tractive force can be controlled by adjusting motor currents. In this paper, control methods used so far arc analyzed with some experimental results and decoupling control algorithm is proposed to control tractive and vertical force separately. Control algorithm is verified through simulation.

  • PDF

An Experimental Study on Static Test of Linear Induction Motor(I) (선형유도전동기의 정특성에 대한 실험적 연구(I))

  • Kim, B.S.;Jeong, H.K.;Park, Y.T.;Lee, H.G.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.18-21
    • /
    • 1996
  • This paper deals with experimentation on static test of linear induction motor for the propulsion system of UTM(Urban Transit Maglev). It is very important that vertical force zero effects to levitation field of maglev. Because it is continuous for air gap 11mm of levitated maglev vehicle. Then we found the slip frequency that the vertical force zero due to it is variable. Thus we had compared between simulation value and experiment value for lim by static test Jig.

  • PDF

Dynamic Stability Analysis of Flexible Media (유연 매체의 동적 안정성 해석)

  • Jee, Jung-Geun;Hong, Sung-Kwon;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.596-599
    • /
    • 2004
  • The media transport systems, such as printers, copiers, facsimile, ATMs, cameras, etc., have been widely used and being developed rapidly. In the development of those systems, the media feeding mechanism is an important key technology for the design and development of the media transport systems. In this paper, a multi-degree of freedom sheet model with dynamic contact conditions is presented to understand the mechanism of sticking and jamming. A sheet is modelled as a cantilever beam and the feeding velocity is assumed to be constant. The relation between the feeding velocity and the coefficient of friction for guaranteeing stable feeding is presented. Simulations are performed for a horizontal linear guide and a oblique linear guide, calculating the contact force and contact states of mass points.

  • PDF

A Control Algorithm of Linear Induction Motor based on Indirect Vector Control (간접 벡터 제어에 근거한 선형유도전동기의 제어 알고리즘)

  • Lee, Jae-Hyun;Jeon, Mi-Rim;Mok, Hyung-Soo;Lee, Jin-Woo;Kim, Sang-Hoon;Kim, Chul-Ho;Chung, Eun-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.302-309
    • /
    • 2008
  • This paper presents a vector control of Linear Induction Motor base on a slip frequency control. And a linear induction motor modeling included the end effect using circuit and equation method is also proposed. We demonstrated through simulation the improvements achieved by the proposed scheme.

  • PDF