• Title/Summary/Keyword: linear random field

Search Result 55, Processing Time 0.034 seconds

Machine Learning Algorithm for Estimating Ink Usage (머신러닝을 통한 잉크 필요량 예측 알고리즘)

  • Se Wook Kwon;Young Joo Hyun;Hyun Chul Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Research and interest in sustainable printing are increasing in the packaging printing industry. Currently, predicting the amount of ink required for each work is based on the experience and intuition of field workers. Suppose the amount of ink produced is more than necessary. In this case, the rest of the ink cannot be reused and is discarded, adversely affecting the company's productivity and environment. Nowadays, machine learning models can be used to figure out this problem. This study compares the ink usage prediction machine learning models. A simple linear regression model, Multiple Regression Analysis, cannot reflect the nonlinear relationship between the variables required for packaging printing, so there is a limit to accurately predicting the amount of ink needed. This study has established various prediction models which are based on CART (Classification and Regression Tree), such as Decision Tree, Random Forest, Gradient Boosting Machine, and XGBoost. The accuracy of the models is determined by the K-fold cross-validation. Error metrics such as root mean squared error, mean absolute error, and R-squared are employed to evaluate estimation models' correctness. Among these models, XGBoost model has the highest prediction accuracy and can reduce 2134 (g) of wasted ink for each work. Thus, this study motivates machine learning's potential to help advance productivity and protect the environment.

Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique (U-FRPM 기법을 이용한 원심팬 광대역소음의 효율적 예측)

  • Heo, Seung;Cheong, Chulung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Recently, a lot of studies have been made about the methods used to generate turbulent velocity fields stochastically in order to effectively predict broadband flow noise. Among them, the FRPM (Fast Random Particle Mesh) method which generates turbulence with specific statistical properties using turbulence kinetic energy and dissipation obtained from the steady solution of the RANS (Reynolds Averaged Navier-Stokes) equations has been successfully applied. However, the FRPM method cannot be applied to the flow noise problems involving intrinsic unsteady characteristics such as centrifugal fan. In this paper, to effectively predict the broadband noise generated by centrifugal fan, U-FRPM (unsteady FRPM) method is developed by extending the FRPM method to be combined with the unsteady numerical solutions of the unsteady RANS equations to generate the turbulence considered as broadband noise sources. Firstly, an unsteady flow field is obtained from the unsteady RANS equations through CFD (Computational Fluid Dynamics). Then, noise sources are generated using the U-FRPM method combined with acoustic analogy. Finally, the linear propagation model which is realized through BEM (Boundary Element Method) is combined with the generated sources to predict broadband noise at the listeners' position. The proposed technique is validated to compare its prediction result with the measured data.

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun - (항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -)

  • CHO, Seung-Wan;KIM, Yong-Ku;PARK, Joo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

Current Status of the KMTNet Active Nuclei Variability Survey (KANVaS)

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Multi-wavelength variability is a staple of active galactic nuclei (AGN). Optical variability probes the nature of the central engine of AGN at smaller linear scales than conventional imaging and spectroscopic techniques. Previous studies have shown that optical variability is more prevalent at longer timescales and at shorter wavelengths. Intra-night variability can be explained through the damped random walk model but small samples and inhomogeneous data have made constraining this model hard. To understand the properties and physical mechanism of intra-night optical variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Using KMTNet, we aim to study the intra-night variability of ~1000 AGN at a magnitude depth of ~19mag in R band over a total area of ${\sim}24deg^2$ on the sky. Test data in the COSMOS, XMM-LSS, and S82-2 fields was obtained over 4, 6, and 8 nights respectively during 2015, in B, V, R, and I bands. Each night was composed of 5-13 epoch with ~30 min cadence and 80-120 sec exposure times. As a pilot study, we analyzed data in the COSMOS field where we reach a magnitude depth of ~19.5 in R band (at S/N~100) with seeing varying between 1.5-2.0 arcsec. We used the Chandra-COSMOS catalog to identify 166 AGNs among 549 AGNs at B<23. We performed differential photometry between the selected AGN and nearby stars, achieving photometric uncertainty ~0.01mag. We employ various standard time-series analysis tools to identify variable AGN, including the chi-square test. Preliminarily results indicate that intra-night variability is found for ~17%, 17%, 8% and 7% of all X-ray selected AGN in the B, V, R, and I band, respectively. The majority of the identified variable AGN are classified as Type 1 AGN, with only a handful of Type 2 AGN showing evidence for variability. The work done so far confirms there are more variable AGN at shorter wavelengths and that intra-night variability most likely originates in the accretion disk of these objects. We will briefly discuss the quality of the data, challenges we encountered, solutions we employed for this work, and our updated future plans.

  • PDF

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.