• 제목/요약/키워드: linear quadratic regulator

검색결과 149건 처리시간 0.029초

5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계 (Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell)

  • 정진희;한재영;성용욱;유상석
    • 대한기계학회논문집B
    • /
    • 제39권6호
    • /
    • pp.505-511
    • /
    • 2015
  • 고체 산화물 연료전지는 $800{\sim}1000^{\circ}C$의 고온에서 작동한다. 고온 작동은 효율에 유리하지만 재료 요구 조건, 신뢰성, 열팽창 문제 등이 발생하여 온도 제어가 중요하다. 본 연구에서는 연료전지 시스템의 열관리를 위한 상태 공간 제어기를 설계하고 응답 특성을 확인하였다. 연료전지 스택과 열관리 핵심부품인 촉매연소기는 집중 용량법을 이용한 과도 응답 모델을 개발하였고, 구성품과 통합하여 정적 운전 특성을 확인하였다. 개발된 비선형 시스템을 정격 운전 조건에서 다중 입력과 출력이 가능한 상태 공간 식으로 선형화하였다. 부하에 따라 응답특성이 현저하게 달라지는 특성을 제어하기 위해 LQR 제어기를 설계하여 궤환 제어 시스템의 온도를 제어하였다. 상태 궤환 제어기가 적어도 두 개의 제어 게인을 가지고 운전 영역에 따른 응답을 보여줄 때, 원하는 온도 응답을 나타냄을 확인하였다.

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향 (The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship)

  • 이성균;이재훈;이기표;최진우
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

An inverse LQG/LTR problem applied to the vehicle steering system

  • Park, Yong-Woon;Kim, Dae-Hyun;Scott, Kimbrough
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.324-327
    • /
    • 1996
  • This paper describes the robust controller design methods applied to the problem of an automatic system for tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique with modified transmission zero assignment. The proposed inverse LQG,/LTR controllers enhances the forward motion stability and maneuverability of the combination vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter perturbations that would cause previous controllers to enters limit cycles or to loose stability.

  • PDF

외륜 이동로봇의 균형제어 알고리즘 (Balancing Control Algorithm for a Single-Wheeled Mobile Robot)

  • 이현탁;박희재
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • ;;;장성규
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구 (Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping)

  • 고성현;박현철;황운봉;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

더블 역 진자 모델을 이용한 사람과 같은 균형 유지 동작 생성 기술 (Human-like Balancing Motion Generation based on Double Inverted Pendulum Model)

  • 황재평;서일홍
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.239-247
    • /
    • 2017
  • The purpose of this study is to develop a motion generation technique based on a double inverted pendulum model (DIPM) that learns and reproduces humanoid robot (or virtual human) motions while keeping its balance in a pattern similar to a human. DIPM consists of a cart and two inverted pendulums, connected in a serial. Although the structure resembles human upper- and lower-body, the balancing motion in DIPM is different from the motion that human does. To do this, we use the motion capture data to obtain the reference motion to keep the balance in the existence of external force. By an optimization technique minimizing the difference between the motion of DIPM and the reference motion, control parameters of the proposed method were learned in advance. The learned control parameters are re-used for the control signal of DIPM as input of linear quadratic regulator that generates a similar motion pattern as the reference. In order to verify this, we use virtual human experiments were conducted to generate the motion that naturally balanced.

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • ;;;;김상봉
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어 (Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller)

  • 탁한호;추연규
    • 한국항해학회지
    • /
    • 제23권3호
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF