• 제목/요약/키워드: linear parameter varying systems

검색결과 91건 처리시간 0.031초

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF

파라메타 불확실성을 갖는 선형시스템에 대한 강한 신뢰 $H_\infty$제어 (Robust and Reliable $H_\infty$ Control for Linear Systems with Parameter Uncertainty)

  • 서창준;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.498-503
    • /
    • 1993
  • In this paper, a robust and reliable H$_{\infty}$ control problem is considered for linear uncertain systems with time-varying norm-bounded uncertainty in the state matrix, which performs well despite of actuator outages. Using linear static state feedback and the quadratic stabilization with H$_{\infty}$-norm bound, a robust and reliable H$_{\infty}$ controller is obtained that stabilizes the plant and guarantees an H$_{\infty}$-norm bound constraint on disturbance attenuation for all admissible uncertainties and normal state as well as faulty state of actuators. It provides a sufficient condition for robust and reliable stabilization with H$_{\infty}$-norm bound. Reliability is guaranteed provided actuator outages only occur within a prespecified subset of actuators.tors.

  • PDF

다변수 가변구조 제어 시스템에서 시변 스위칭 초평면의 새로운 시도 (New Approach of Time-varying Switching Hyperplane in Multivariable Variable Structure Control Systems)

  • 이주장;김종준;김은선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.402-406
    • /
    • 1990
  • A new approach of a time-varying switching hyperplane based on the theory of variable structure system (VSS) is proposed for the control of multivariable systems. While the conventional switching surface can net achieve the robust performance against parameter variations and disturbances before the sliding mode occurs, the proposed switching hyperplane, which is obtained from the eigen-structure assignment theory powerfully used in the linear multivariable systems, ensures the sliding mode from the initial state. And new continuous control input which guarantees the sliding mode is proposed. This new control input does not arise chattering problem which arises with the conventional control input of variable structure control systems. Through numerical examples, the expellant performances of the proposed controller are verified.

  • PDF

Robust H$\infty$ FIR Filtering for Uncertain Time-Varying Sampled-Data Systems

  • Ryu, Hee-Seob;Kwon, Byung-Moon;Kwon, Oh-Kyu
    • Journal of KIEE
    • /
    • 제11권1호
    • /
    • pp.21-26
    • /
    • 2001
  • This paper considers the problem of robust H$\infty$ filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, that would be guarantee a prescribed H$\infty$ performance in the continuous-time context, irrespective of the parameter uncertainty and unknown initial states.

  • PDF

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어 (Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input)

  • 강민석;윤우현
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론 (Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input)

  • 강민식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

전환 시스템 접근법을 이용한 구간 시간지연 선형 시스템의 안정성 (Stability of Interval Time-delayed Linear Systems using a Switched System Approach)

  • 김주경;김진훈
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.673-678
    • /
    • 2013
  • This paper considers the stability of linear systems having an interval time-varying delay using a switched system approach. The time-delay system is converted to the switched system equivalently, and then a stability criterion in the form of linear matrix inequality(LMI) is derived by using a parameter dependent Lyapunov-Krosovskii function(PD-LKF). In constructing a PD-LKF, the decomposition is employed for delay free intervals, and the reduction of conservatism is shown analytically as the number of decomposition increases. Finally, two well-known numerical examples are given to show the reduction of conservatism compared to the recent results.

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF