• Title/Summary/Keyword: linear network

Search Result 1,835, Processing Time 0.031 seconds

BAT AGN Spectroscopic Survey - The parsec scale jet properties of the ultra hard X-ray selected local AGNs

  • Baek, Junhyun;Chung, Aeree;Schawinski, Kevin;Oh, Kyuseok;Wong, Ivy;Koss, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • We have conducted a 22 GHz very long baseline interferometry (VLBI) survey of 281 local (z < 0.05) active galactic nuclei (AGNs) selected from the Swift Burst Alert Telescope (BAT) 70-month ultra hard X-ray (14-195 keV) catalog. The main goal is to investigate the relation between the strengths of black hole accretion and the parsec-scale nuclear jet, which is expected to tightly correlate but has not been observationally confirmed yet. The BAT AGN Spectroscopic Survey (BASS) provides the least biased AGN sample against obscuration including both Seyfert types, hence it makes an ideal parent sample for studying the nuclear jet properties of an overall AGN population. Using the Korean VLBI Network (KVN), the KVN and VERA Array (KaVA), and the Very Long Baseline Array (VLBA), we observed 281 objects with a 22 GHz flux > 30 mJy, detecting 11 targets (~4% of VLBI detection rate). This implies that the fraction of X-ray AGNs which are currently ejecting a strong nuclear jet is very small. Although our 11 sources span a wide range of pc-scale morphological types, from compact to complex, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our finding may indicate that the power of nuclear jet is directly responsible for the amount of black hole accretion. We also have probed the fundamental plane of black hole activity in VLBI scale (e.g., few milli-arcsecond). The results from our high-frequency VLBI radio study support that the change of jet luminosity and size follows what is predicted by the AGN evolution scenario based on the Eddington ratio (ƛ$_{Edd}$) - column density ($N_H$) plane, proposed by a previous study.

  • PDF

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Prediction of damages induced by Snow using Multiple-linear regression and Artificial Neural Network model (다중선형회귀 및 인공신경망 모형을 이용한 대설피해에 따른 피해액 예측에 관한 연구)

  • Kwon, Soon Ho;Lee, Eui Hoon;Chung, Gunhui;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.20-20
    • /
    • 2017
  • 최근 기후변화 영향에 따라 전 세계적으로 인명피해 및 재산피해를 유발하는 자연재난이 지속적으로 증가하고 있으며, 그로 인한 자연재해의 규모가 점점 더 커지고 있다. 실제로 우리나라에서도 지난 1994 년에서 2013 년까지 지난 20 년간 자연재해에 의한 피해액은 12조 3천억 원으로 집계되었으며, 이 중 강우와 태풍에 의한 피해가 85 % 이고, 대설에 의한 피해는 약 13 % 로 자연재해 중 대부분의 피해는 강우 및 태풍에서 발생하지만, 폭설에 의한 피해도 적지 않은 것으로 나타났다. 이에 따라, 정확한 예측을 위해 신뢰도 높은 자료 구축을 통한 대설피해 예측에 관한 연구가 필요한 시점이다. 본 연구에서는 대설피해액 예측을 위해 우리나라의 63개 기상 관측소에서 관측한 적설심 자료 및 기상관측 자료와 사회 경제 자료 총 11개를 대설피해 예측을 위한 입력변수로 선정하고, 이를 기상관측소가 속한 도시의 면적에 따라 3개의 지역으로 구분하였다. 주성분분석을 활용하여 선정된 입력변수들을 4개의 주성분으로 구분하고, 인공신경망 및 다중선형 회귀 모형을 구성하여 각 지역별 대설피해 예측의 오차를 분석하였다. 적용결과, 인공신경망 모형을 이용한 대설피해 예측의 수정결정계수는 22.8 %~48.2 %를 나타냈고, 다중선형회귀 모형의 수정결정 계수는 9.2 %~39.7% 로 나타났다. 그러므로 인공신경망 모형이 다중회귀 모형보다 선택된 입력자료를 활용하여 대설피해를 예측하는 목적으로 조금 더 우수한 결과를 나타내었다. 향후 자료를 보완 및 모형의 고도화를 통해 보다 정확한 대설피해 예측 함수 개발이 가능할 것으로 기대된다.

  • PDF

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs

  • Ortiz, Adrielly Garcia;Soares, Gustavo Hermes;da Rosa, Gabriela Cauduro;Biazevic, Maria Gabriela Haye;Michel-Crosato, Edgard
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.187-193
    • /
    • 2021
  • Purpose: This study aimed to assess the usefulness of machine learning and automation techniques to match pairs of panoramic radiographs for personal identification. Materials and Methods: Two hundred panoramic radiographs from 100 patients (50 males and 50 females) were randomly selected from a private radiological service database. Initially, 14 linear and angular measurements of the radiographs were made by an expert. Eight ratio indices derived from the original measurements were applied to a statistical algorithm to match radiographs from the same patients, simulating a semi-automated personal identification process. Subsequently, measurements were automatically generated using a deep neural network for image recognition, simulating a fully automated personal identification process. Results: Approximately 85% of the radiographs were correctly matched by the automated personal identification process. In a limited number of cases, the image recognition algorithm identified 2 potential matches for the same individual. No statistically significant differences were found between measurements performed by the expert on panoramic radiographs from the same patients. Conclusion: Personal identification might be performed with the aid of image recognition algorithms and machine learning techniques. This approach will likely facilitate the complex task of personal identification by performing an initial screening of radiographs and matching ante-mortem and post-mortem images from the same individuals.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

Reference dosimetry for inter-laboratory comparison on retrospective dosimetry techniques in realistic field irradiation experiment using 192Ir

  • Choi, Yoomi;Kim, Hyoungtaek;Kim, Min Chae;Yu, Hyungjoon;Lee, Hyunseok;Lee, Jeong Tae;Lee, Hanjin;Kim, Young-su;Kim, Han Sung;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2599-2605
    • /
    • 2022
  • The Korea Retrospective Dosimetry network (KREDOS) performed an inter-laboratory comparison to confirm the harmonization and reliability of the results of retrospective dosimetry using mobile phone. The mobile phones were exposed to 192Ir while attached to the human phantoms in the field experiment, and the exposure doses read by each laboratory were compared. This paper describes the reference dosimetry performed to present the reference values for inter-comparison and to obtain additional information about the dose distribution. Reference dosimetry included both measurement using LiF:Mg,Cu,Si and calculation via MCNP simulation to allow a comparison of doses obtained with the two different methodologies. When irradiating the phones, LiF elements were attached to the phones and phantoms and irradiated at the same time. The comparison results for the front of the phantoms were in good agreement, with an average relative difference of about 10%, while an average of about 16% relative difference occurred for the back and side of the phantom. The differences were attributed to the different characteristics of the physical and simulated phantoms, such as anatomical structure and constituent materials. Nevertheless, there was about 4% of under-estimation compared to measurements in the overall linear fitting, indicating the calculations were well matched to the measurements.

Three-dimensional analysis of dermal backflow in cancer-related lymphedema using photoacoustic lymphangiography

  • Oh, Anna;Kajita, Hiroki;Imanishi, Nobuaki;Sakuma, Hisashi;Takatsume, Yoshifumi;Okabe, Keisuke;Aiso, Sadakazu;Kishi, Kazuo
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.99-107
    • /
    • 2022
  • Background Dermal backflow (DBF), which refers to lymphatic reflux due to lymphatic valve insufficiency, is a diagnostic finding in lymphedema. However, the three-dimensional structure of DBF remains unknown. Photoacoustic lymphangiography (PAL) is a new technique that enables the visualization of the distribution of light-absorbing molecules, such as hemoglobin or indocyanine green (ICG), and can provide three-dimensional images of superficial lymphatic vessels and the venous system. This study reports the use of PAL to visualize DBF structures in the extremities of patients with lymphedema after cancer surgery. Methods Patients with a clinical or lymphographic diagnosis of lymphedema who previously underwent surgery for cancer at one of two participating hospitals were included in this study. PAL was performed using the PAI-05 system. ICG was administered subcutaneously in the affected hand or foot, and ICG fluorescence lymphography was performed using a near-infrared camera system prior to PAL. Results Between April 2018 and January 2019, 21 patients were enrolled and examined using PAL. The DBF was composed of dense, interconnecting, three-dimensional lymphatic vessels. It was classified into three patterns according to the composition of the lymphatic vessels: a linear structure of lymphatic collectors (pattern 1), a network of lymphatic capillaries and lymphatic collectors in an underlying layer (pattern 2), and lymphatic capillaries and precollectors with no lymphatic collectors (pattern 3). Conclusions PAL showed the structure of DBF more precisely than ICG fluorescence lymphography. The use of PAL to visualize DBF assists in understanding the pathophysiology and assessing the severity of cancer-related lymphedema.

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.143-149
    • /
    • 2022
  • Since patent documents contain detailed results of research and development technologies, many studies on various patent analysis methods for effective technology analysis have been conducted. In particular, research on quantitative patent analysis by statistics and machine learning algorithms has been actively conducted recently. The most used patent data in quantitative patent analysis is technology keywords. Most of the existing methods for analyzing the keyword data were models based on the Gaussian probability distribution with random variable on real space from negative infinity to positive infinity. In this paper, we propose a model using gamma probability distribution to analyze the frequency data of patent keywords that can theoretically have values from zero to positive infinity. In addition, in order to determine the regression equation of the gamma-based regression model, two-mode network is constructed to visualize the technological association between keywords. Practical patent data is collected and analyzed for performance evaluation between the proposed method and the existing Gaussian-based analysis models.

Machine Parts(O-Ring) Defect Detection Using Adaptive Binarization and Convex Hull Method Based on Deep Learning (적응형 이진화와 컨벡스 헐 기법을 적용한 심층학습 기반 기계부품(오링) 불량 판별)

  • Kim, Hyun-Tae;Seong, Eun-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1853-1858
    • /
    • 2021
  • O-rings fill the gaps between mechanical parts. Until now, the sorting of defective products has been performed visually and manually, so classification errors often occur. Therefore, a camera-based defect classification system without human intervention is required. However, a binarization process is required to separate the required region from the background in the camera input image. In this paper, an adaptive binarization technique that considers the surrounding pixel values is applied to solve the problem that single-threshold binarization is difficult to apply due to factors such as changes in ambient lighting or reflections. In addition, the convex hull technique is also applied to compensate for the missing pixel part. And the learning model to be applied to the separated region applies the residual error-based deep learning neural network model, which is advantageous when the defective characteristic is non-linear. It is suggested that the proposed system through experiments can be applied to the automation of O-ring defect detection.