• 제목/요약/키워드: linear machine drive system

검색결과 41건 처리시간 0.021초

자동차부품 용접자동화장치 개발 및 용접품질 개선에 관한 연구 (Development of Automatic Welding Machine and Weld-Quality Improvement for Automobile Parts)

  • 김교형;이기설;이택순;주해호
    • 한국정밀공학회지
    • /
    • 제7권1호
    • /
    • pp.63-73
    • /
    • 1990
  • Low cost automatic welding machine is developed for the purpose of welding process automation of automobile parts with two dimensional welding joints. Developed gantry type machine is equipped with X, Y and roll axis stepping motors, and dirive units units are designed by two phase on drive scheme using shift registers. Control system is constructed by single board microcomputer of Z80A CPU, and also it is equipped with parallel input output ports and counter-timer chips. Linear and circular interpolation of welding head movement is accomplished by employing software digital differential analyzers. It has been shown that contour error of develped system is withi ${\pm}1.0mm$, meaning that the machine is suitable for CO2 arc welding process of automoble parts and is expected it's application to industry.

  • PDF

선형 유도전동기의 추진력 및 수직력 제어 방식 (Decoupling Control of Tractive and Vertical Force of Linear Induction Motor)

  • 오성철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.289-291
    • /
    • 1996
  • Linear induction motor(LIM) is widely used to drive magnetic levitation train. To drive LIM, different control method compared with conventional rotary type machine is needed. Since vertical force is generated inherently and it effects on the levitation system, vertical force should be kept constant for stable levitation. To keep vertical force constant, slip frequency should be kept constant. Once slip frequency is kept constant, tractive force can be controlled by adjusting motor currents. In this paper, control methods used so far arc analyzed with some experimental results and decoupling control algorithm is proposed to control tractive and vertical force separately. Control algorithm is verified through simulation.

  • PDF

이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현 (Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment)

  • 하홍곤;이창호
    • 융합신호처리학회논문지
    • /
    • 제8권2호
    • /
    • pp.124-129
    • /
    • 2007
  • 최근, 반도체장비, 공구이송장비 그리고 CNC같은 여러 산업분야에 선형기계의 응용이 크게 증가하고 있다. 그러나 선형전동기는 진동특성을 가지고 있다. 그러므로 이러한 응용분야에서 정상 및 과도응답상태에서 고성능 위치제어가 필요하게 된다. 본 논문에서 간단하면서도 강력한 위치제어법을 2자유도 PID제어기를 이용하여 제안하였다. 이 기법은 과도현상없이 선형기계를 구동할 수 있는 잇점과 간단한 이득 동조를 할 수 있다. 일반적인 PID 제어기에 비해서 2자유도 제어기를 사용한 선형 전동기의 제어계의 성능 향상이 논의되었다. 그리고 시뮬레이션의 결과로 위치제어계의 응답에서 과도응답과 기동특성의 향상, 그리고 불필요한 진동성분의 제거에 유효함을 확인하였다.

  • PDF

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

리니어모터 시스템 구조설계에 관한 연구 (A Study on the Structural Design of Linear Motor System)

  • 은인웅;이춘만;황영국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1059-1063
    • /
    • 2005
  • Development of a feed drive-system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, due to great power loss and magnetic attraction of the linear motors heating and deflection problems occur. Therefore, it is necessary to design strong structure, cooling device with high efficiency and light weight construction in designing stage of linear motors. This paper presents an investigation into a structural design of linear motor system. In this research, a new concept of moving table with high stiffness and of cooling plate is also introduced. Structure analyses are performed by using a commercial code ANSYS in order to evaluate the design safety.

  • PDF

NC 공작기계 이송 구동계의 모델링과 제어

  • 김호기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.34-39
    • /
    • 1996
  • In many industrial applicatiosns such as machine tools and automation equipments the control performance of the feed-drive systems as positioning devices of the tools and workpieces have great influences on the quality of related machines. For many electrically driven mechanical feed systems resilient couplings between motors and mechanical elements which mostly consist of elasttic shafts and gears often are unavoidable. Commonly these systems can be regarded as an elastic multi-mass systems can be regarded as an elastic multi-mass system which is dealt with this contribution. S high performance speed or position control can only be achieved with the considering of the mechanical elastic characteristics of the system. n this paper some practic characteristics of the system In this paper some practical information is given about experience in modeling design simulation and experiments for linear elastic multi-mass system,

  • PDF

Analysis and Compensation Control of Dead-Time Effect on Space Vector PWM

  • Shi, Jie;Li, Shihua
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.431-442
    • /
    • 2015
  • Dead-time element must be set into space vector pulsed width modulation signals to avoid short circuits of the inverter. However, the dead-time element distorts the output voltage vector, which deteriorates the performance of electrical machine drive system. In this paper, dead-time effect and its compensation control strategy are analyzed. Based on the analysis, the voltage distortion caused by dead-time is regarded as two disturbances imposed on dq axes in the rotor reference frame, which degenerates the current tracking performance. To inhibit the adverse effect caused by the dead-time, a control scheme using two linear extended state observers is proposed. This method provides a strong ability to suppress dead-time effects. Simulations and experiments are conducted on a permanent magnet synchronous motor drive system to demonstrate the effectiveness of the proposed method.

적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제 (A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter)

  • 이동희
    • 전력전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.274-283
    • /
    • 2006
  • Permanent Magnet Synchronous Motor(PMSM)는 볼스크류, 기어 및 타이밍 벨트를 이용하여 NC, 가공기, 로봇 및 공장 자동화를 포함하여 산업 시스템 전반에 널리 사용되고 있다. 이러한 PMSM과 부하의 결합으로 구성된 시스템은 동력의 전달에 있어서, 고유의 공진 주파수를 가지며 공진 주파수 대역에서의 기계계의 응답 특성은 매우 불안정하고, 기계 시스템의 손상을 일으키게 된다. 본 논문에서는 PMSM을 이용한 직선 운동 시스템에서 기계적인 결합에 의한 기구부의 진동을 억제하기 위하여 진동 주파수를 자동으로 검출하여, 진동의 원인이 되는 토크 지령 신호를 억제하는 적응형 노치 필터를 포함하는 속도 제어 시스템을 제안한다. 하지만, 기계적인 진동 주파수와 주파수의 대역은 전동기에 결합된 결합 기구 및 부하에 따라서 변동하는 특성을 가지고 기계적인 진동의 크기도 진동원이 되는 신호에 따라 변동하므로, 이를 적응형 노치 필터부에서 이를 진단하여 진동 주파수를 자동으로 억제함으로써 안정적인 운전이 가능하도록 설계된다. 본 논문에서 제안된 기계적인 진동을 억제하기 위한 적응형 노치 필터의 성능은 시뮬레이션 및 실험을 통하여 검증하였다.

Halbach배열 영구자석 가동자로 구성된 Tubular형 직선 왕복 액추에이터의 특성해석 및 실험 (Experimental and Characteristic Analysis of Tubular Type Linear Oscillating Actuator with Halabch Magnetized PMs Mover)

  • 장석명;최장영;이성호;이성래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.756-758
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. This paper deals with the characteristics of tubular type linear oscillating actuator with Halbach magnet array. The magnetic field solutions are derived analytically in terms of vector potential, two dimensional cylindrical coordinate system and Maxwell's equations. Motor thrust, flux linkage, back emf are then derived. The results are shown in good conformity with those obtained from the commonly used finite element method. Test results such as thrust measurements are also given to confirm the analysis.

  • PDF

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.