• 제목/요약/키워드: linear integer programming (LIP)

검색결과 2건 처리시간 0.019초

다제약식하에서의 최적중복설계에 관한 연구 (Redundancy Optimization under Multiple Constraints)

  • 윤덕균
    • 한국국방경영분석학회지
    • /
    • 제11권2호
    • /
    • pp.53-63
    • /
    • 1985
  • This paper presents a multi-costraint optimization model for redundant system reliability. The optimization model is usually formulated as a nonlinear integer programming (NIP) problem. This paper reformulates the NIP problem into a linear integer programming (LIP) problem. Then an efficient 'Branch and Straddle' algorithm is proposed to solve the LIP problem. The efficiency of this algorithm stems from the simultaneous handling of multiple variables, unlike in ordinary branch and bound algorithms. A numerical example is given to illustrate this algorithm.

  • PDF

Margin Adaptive Optimization in Multi-User MISO-OFDM Systems under Rate Constraint

  • Wei, Chuanming;Qiu, Ling;Zhu, Jinkang
    • Journal of Communications and Networks
    • /
    • 제9권2호
    • /
    • pp.112-117
    • /
    • 2007
  • In this paper, we focus on the total transmission power minimization problem for downlink beamforming multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems while ensuring each user's QoS requirement. Although the linear integer programming (LIP) solution we formulate provides the performance upper bound of the margin adaptive (MA) optimization problem, it is hard to be implemented in practice due to its high computational complexity. By regarding each user's equivalent channel gain as approximate independent values and using iterative descent method, we present a heuristic MA resource allocation algorithm. Simulation results show that the proposed algorithm efficiently converges to the local optimum, which is very close to the performance of the optimal LIP solution. Compared with existing space division multiple access (SDMA) OFDM systems with or without adaptive resource allocation, the proposed algorithm achieves significant performance improvement by exploiting the frequency diversity and multi-user diversity in downlink multiple-input single-output (MISO) OFDM systems.