• 제목/요약/키워드: linear filter

검색결과 1,174건 처리시간 0.022초

전신방사선조사(TBI)시 다이오드 측정기(Diode detector) 및 열형광선량계(TLD)를 이용한 골조직 선량감쇄에 대한 고찰 (A study on dose attenuation in bone density when TBI using diode detector and TLD)

  • 임현실;이정진;장안기;김완선
    • 대한방사선치료학회지
    • /
    • 제15권1호
    • /
    • pp.67-77
    • /
    • 2003
  • I. 목적 전신방사선조사(TBI)시 균등한 선량을 조사할 목적으로 사용되는 각 신체부위별 보상체(compensator) 두께의 결정은 열형광선량계(TLD)를 이용하여 표면선량(surface dose)를 측정하고, 심부선량(depth dose)으로 환산하는 방법을 주로 이용한다. 그러나 이와 같은 방법은 골(bone) 조직에 대한 선량감쇄(dose attenuation)의 영향이 고려되지 않아 신체중심부에서의 정확한 심부선량을 알 수가 없다. 이에 본 연구에서는 열형광선량계와 다이오드측정기(Diode detector)로 표면선량과 심부선량을 동시에 측정하여 골조직에서의 선량감쇄 영향을 알아보고자 한다. II. 대상 및 방법 실험은 본원에서 TBI 치료를 받은 5명의 환자를 대상으로 실시하였으며, 측정장비로는 Siemens Mevatron 10MV X-ray, TLD(Harshaw 5500), Diode detector(Sun Nuclear)를 사용하였다. 선량 조사방법은 복부의 배꼽(umblicus)를 중심으로 하여 이문대향법(Bilateral)으로 150cGy가 조사되도록 하였다. 측정방법은 열형광선량계로 두부, 경부, 대퇴부, 슬관절, 족관절, 부위의 표면선량을 측정하였으며, 이 가운데 대퇴부, 슬관절, 족관절에서는 중심부 선량측정이 가능하여 동시에 심부선량을 측정하였다. 또한 실험대상자 중 3명의 환자는 상기와 같은 부위(두부, 경부, 대퇴부, 슬관절, 족관절)에 다이오드측정기로 심부선량을 측정하였다. III. 결과 TLD로 측정한 표면선량을 심부선량으로 환산한 값은 두부, 경부, 대퇴부, 슬관절, 족관절에서 각각 $92.78{\pm}3.3,\;104.34{\pm}2.3,\;98.03{\pm}1.4,\;99.9{\pm}2.53,\;98.17{\pm}0.56$ 이었고, 중심부 심부선량 측정이 가능한 대퇴부, 슬관절, 족관절에서는 각각 $86{\pm}1.82,\;93.24{\pm}2.53,\;91.50{\pm}2.84$로 나타났다. 따라서 표면선량과 중심부 심부선량 비교가 가능한 대퇴부, 슬관절, 족관절에서의 TLD의 측정치를 비교해보면 부위에 따라 최소 $6.67\%{\sim}$ 최대 $11.65\%$까지 골조직에 의한 선량감소가 나타나는 것을 알 수가 있다. 또한, Diode detector로 측정한 심부선량 값은 두부, 경부, 대퇴부, 슬관절, 족관절에서 각각 $95.23{\pm}1.18,\;98.33{\pm}0.6,\;93.5{\pm}1.5,\;87.3{\pm}1.5,\;86.90{\pm}1.16$으로 나타났으며, TLD로 측정한 대퇴부, 슬관절, 족관절에서의 표면선량과 비교했을 때 부위에 따라 최소 $4.53\%{\sim}$ 최대 $12.6\%$ 까지 차이를 보였다. 그리고 골조직에 의한 선량감쇄의 영향이 적은 복부(배꼽)에서는 열형광선량계 및 다이로드측정기로 측정한 값이 각각 $101.58{\pm}0.95,\;104.77{\pm}1.18$로 큰 차이가 없었다. IV 결론 전신방사선조사시 표면선량을 측정하여 심부선량으로 환산한 값은 골조직의 감쇄영향을 고려하지 못하므로 다이로드측정기(Diode detector) 또는 열형광선량계(TLD)로 중심부선량을 직접 측정하는 것이 중요하다. 그러나 중심부의 심부선량을 직접 측정할 수 없을 경우에는 골조직의 감쇄영향을 고려하여 복부배꼽에서의 선량보다 $5\%{\sim}10\%$ 정도의 선량이 초과 조사되도록 보상물질의 두께를 적절하게 조절하는 것이 필요할 것으로 사료된다.

  • PDF

비 상업용 3차원 치료계획시스템인 Plunc의 임상적용 가능성에 대한 연구 (A Study of a Non-commercial 3D Planning System, Plunc for Clinical Applicability)

  • 조병철;오도훈;배훈식
    • Radiation Oncology Journal
    • /
    • 제16권1호
    • /
    • pp.71-79
    • /
    • 1998
  • 목적 : 비 상업용 3차원 컴퓨터치료계획시스템인 Plunc의 구축 사례를 소개하고 이의 임상적용 가능성에 대하여 검증하고자 한다. 대상 및 방법 : 미국 North Carolina 대학에서 개발된 3차원 치료계획시스템인 Plunc의 소스코드를 제공받아, PC용 Unix인 Linux 환경의 Pentium Pro 200MHz(128MB RAM, Millennium VGA)에서 설치하였다. 본과의 6MV 광자선(Siemens MXE 6740)에 대한 출력인자, 최대산란비, 최대산란인자, 쐐기의 모양 및 감쇄인자 등의 빔데이터를 입력한 후, 일반적인 치료조건인 loom 깊이의 회전중심점에서의 심부선량백분율, 선량측면도, oblique 입사빔 및 공기간격 하에서의 선량계산 결과를 물팬톰에서의 측정치와 비교, 분석하였다. 결과 : Plunc는 원래 CT 영상데이터를 이용한 모의치료기로써 개발되어, 빔 설계가 매우 편리하도록 사용자 인터페이스가 구성되어 있으며, BEV, DRR 및 영상합성 등의 기능을 갖추고 있다. 선량계산은 10초 정도가 소요되는 3차원 선량분포나 선량체적히스토그람을 제외하고는 거의 실시간으로 실행되었다. Plunc에 의한 선량 계산 값을 측정값과 비교한 결과, 심부선량백분율의 경우, 선량증가영역을 제외하고는 $1\%$이내에서 일치하였다. 또한, 선량측면도의 경우, $5\%$가량의 선량감소를 나타내는 치료영역 크기 밖의 저선량 영역을 제외하고는 $2\%$ 이내에서 일치하였다. Oblique 입사 빔의 경우, 빔 중심축을 포함하는 평면상의 선량분포가 선량이 $30\%$ 이하인 영역을 제외하고는 비교적 잘 일치하였다. 공기간격을 통과한 빔에 대한 선량측면도의 비교 결과, 중심 축에서의 선량 값에 대해 $5\%$의 오차를 보였다. 결론 : Plunc의 광자선량계산의 정밀도는 일반적인 치료조건하에서 약 $2-5\%$ 내외의 오차로써, 측정치에 대한 보정에 근거한 알고리즘을 사용하는 일반 치료계획시스템과 비슷한 수준이라 사료된다. 현재로서는 전자선에 대한 선량계산이 불가능하기 때문에 완전한 형태의 치료계획시스템이 되기 위해서는 향후, 전자선에 대한 계산모듈의 개발과 광자선 선량계산 또한 보다 정밀한 선량계산이 가능한 컨벌루션 방법과 같은 3차원 선량계산모듈의 개발도 필요하다. Plunc는 상업용 3차원 치료계획 시스템의 사용이 현실적으로 어려운 여건의 병원에서 2차원 치료계획시스템과 상호 보완적으로 사용한다면 2차원 치료계획시스템이 갖는 많은 제약을 극복할 수 있을 것으로 사료된다.

  • PDF

효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용 (A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market)

  • 이모세;안현철
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.167-181
    • /
    • 2018
  • 지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.

용적세기조절회전치료 치료계획 확인에 사용되는 MapPHAN의 유용성 평가 (Evaluation of the Usefulness of MapPHAN for the Verification of Volumetric Modulated Arc Therapy Planning)

  • 우헌;박장필;민제순;이제희;유숙현
    • 대한방사선치료학회지
    • /
    • 제25권2호
    • /
    • pp.115-121
    • /
    • 2013
  • 목 적: 최신 선형가속기와 새로운 평가 장비를 도입하게 되어 이를 임상에 적용하기 위한 준비과정 중 몇 가지 문제가 발생하여 유용성을 확인하는 과정을 분석함으로써 앞으로 이 장비를 도입하는 기관에 도움이 되고자 한다. 대상 및 방법: 모든 측정은 TrueBEAM STX (Varian, USA)를 이용하였으며, 전산화치료계획장비(Eclipse ver 10.0.39, Varian, USA)를 이용하여 각 에너지 별, 조사조건 별 선량분포파일을 산출하였다. MapCHECK 2의 고유의 성능과 오차로 발생 할 수 있는 원인에 대하여 측정 및 분석하였다. MapCHECK 2의 성능 확인을 위해 6X, 6X-FFF (Flattening Filter Free), 10X, 10X-FFF, 15X의 에너지별로 필드사이즈 $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$ 방향에서 측정을 하였다. 또한 기존 IGRT couch의 CT값이 volumetric dosimetry에 영향을 주는지 확인을 위해서, CT 넘버 값: -800 (Carbon) & -950 (COUCH안의 공기), -100 & -950을 지정해준 상태에서 6X-FFF, 15X의 에너지별로 필드사이즈 $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$, $135^{\circ}$, $275^{\circ}$ 방향에서 측정을 하였고, MapPHAN에 할당된 HU 값 확인을 위해 Solid water phantom 3 cm을 위로 얹은 MapCHECK 2와 치료계획용 컴퓨터를 이용해 비교하였고, MapPHAN의 각진 모서리에 의한 측정오류문제, MapPHAN의 gantry 방향 의존성을 알아보기 위해 3가지 방법으로 측정 하였다. 세로로 세운 세팅 상태에서 6X-FFF, 15X를 GANTRY $90^{\circ}$, $270^{\circ}$ 방향에서 각각 측정하고, 가로로 세운 세팅상태에서 에너지 6X-FFF, 15X를 필드사이즈 $10{\times}10$ cm, $90^{\circ}$, $45^{\circ}$, $315^{\circ}$, $270^{\circ}$의 방향에서 각각 측정하였다. 세 번째로 빔의 세기조절을 하지 않은 상태에서 open arc를 조사하였다. 결 과: MapCHECK의 기본 성능을 확인, Couch에 의한 감약 측정, MAP-PHAN에 할당하는 HU값 측정, MapPHAN의 각진 모서리에 대한 계산 정확도 확인을 위한 측정에서 모두 유효한 범위에 들어와 측정오류에 영향을 미치지 않는 것을 확인 할 수 있었다. Gantry 방향의존성 확인하기 위한 3가지 방법 중 첫 번째로 측정기를 세운 상태에서의 값은 Gantry $270^{\circ}$ (상대적 $0^{\circ}$), $90^{\circ}$ (상대적 $180^{\circ}$)에서 6X-FFF, 15X에서 각각 -1.51, 0.83%와 -0.63, -0.22%를 나타내어 AP/PA 방향에 의한 영향이 없음을 나타냈다. 측정기를 가로로 세팅한 상태에서는 Gantry $90^{\circ}$, $270^{\circ}$에서 에너지 6X-FFF 4.37, 2.84%, 15X에서는 -9.63, -13.32%의 차이가 측정되어 gamma pass rate 3%의 값보다 큰 값을 나타내므로 MapPHAN에 의한 측방향 측정값이 유효범위 안에 들지 못하는 것을 확인 할 수 있었다. 마지막 Open Arc에서 6X-FFF, 15X 에너지를 필드사이즈 $10{\times}10$ cm에 $360^{\circ}$ 회전상태에서의 선량분포를 보면 pass rate가 90% 가까이 나오는 것을 확인 할 수 있다. 결 론: 위 결과를 토대로 MapPHAN은 상대등선량분포 감마값 측정에는 적합 하지만, 측방향 빔에 대한 gantry 방향의 의존성 때문에 절대선량은 정확한 측정을 할 수 없는 것으로 판단되어진다. 본 논문에서는 더욱 정확한 치료계획 확인을 위해서 VMAT 같은 회전조사시 측방향에 대한 오차를 줄이고 정확한 절대선량을 측정하기 위해서 MapCHEK 2와 IMF (Isocentric Mounting Fixture)의 조합을 사용하여 gantry 방향 의존성에 의한 영향을 최소화 할 수 있을 것이라 판단된다.

  • PDF